論文の概要: Unveiling Secrets of Brain Function With Generative Modeling: Motion Perception in Primates & Cortical Network Organization in Mice
- arxiv url: http://arxiv.org/abs/2412.19845v1
- Date: Wed, 25 Dec 2024 03:39:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-31 16:04:58.134661
- Title: Unveiling Secrets of Brain Function With Generative Modeling: Motion Perception in Primates & Cortical Network Organization in Mice
- Title(参考訳): 生成モデルによる脳機能の解明--霊長類の運動知覚とマウスの皮質ネットワーク組織
- Authors: Hadi Vafaii,
- Abstract要約: この本は、生成モデリングの応用を通じて神経科学の問題に対処する2つの主要なプロジェクトで構成されている。
プロジェクト#1は、脳の受容の構造を調査します。
プロジェクト#2は、マウス大脳皮質が自然界に分解できることを示している。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: This Dissertation is comprised of two main projects, addressing questions in neuroscience through applications of generative modeling. Project #1 (Chapter 4) explores how neurons encode features of the external world. I combine Helmholtz's "Perception as Unconscious Inference" -- paralleled by modern generative models like variational autoencoders (VAE) -- with the hierarchical structure of the visual cortex. This combination leads to the development of a hierarchical VAE model, which I test for its ability to mimic neurons from the primate visual cortex in response to motion stimuli. Results show that the hierarchical VAE perceives motion similar to the primate brain. Additionally, the model identifies causal factors of retinal motion inputs, such as object- and self-motion, in a completely unsupervised manner. Collectively, these results suggest that hierarchical inference underlines the brain's understanding of the world, and hierarchical VAEs can effectively model this understanding. Project #2 (Chapter 5) investigates the spatiotemporal structure of spontaneous brain activity and its reflection of brain states like rest. Using simultaneous fMRI and wide-field Ca2+ imaging data, this project demonstrates that the mouse cortex can be decomposed into overlapping communities, with around half of the cortical regions belonging to multiple communities. Comparisons reveal similarities and differences between networks inferred from fMRI and Ca2+ signals. The introduction (Chapter 1) is divided similarly to this abstract: sections 1.1 to 1.8 provide background information about Project #1, and sections 1.9 to 1.13 are related to Project #2. Chapter 2 includes historical background, Chapter 3 provides the necessary mathematical background, and finally, Chapter 6 contains concluding remarks and future directions.
- Abstract(参考訳): この論文は2つの主要なプロジェクトから構成されており、生成モデリングの応用を通じて神経科学における疑問に対処している。
プロジェクト#1 (Chapter)
4) ニューロンがどのように外界の特徴をコードするかを探索する。
私は、Helmholtz氏の"Perception as Unconscious Inference" -- 変分オートエンコーダ(VAE)のような現代的な生成モデルと視覚野の階層構造とを組み合わせています。
この組み合わせは、運動刺激に応答して霊長類視覚野からニューロンを模倣する能力をテストした階層型VAEモデルの開発につながります。
その結果、階層的VAEは霊長類脳と同様の運動を知覚することが明らかとなった。
さらに、モデルは完全に教師なしの方法で、物体や自己運動のような網膜運動入力の因果因子を特定する。
これらの結果は、階層的推論が脳の世界の理解を基盤としており、階層的VAEはこの理解を効果的にモデル化することができることを示唆している。
プロジェクト#2 (Chapter)
5) 自発性脳活動の時空間構造と休息のような脳状態の反射について検討した。
同時にfMRIと広視野Ca2+画像データを用いて、マウス大脳皮質が重なり合うコミュニティに分解され、皮質の約半数が複数のコミュニティに属していることを示す。
比較によってfMRIとCa2+信号から推定されるネットワーク間の類似点と相違点が明らかになった。
導入(Chapter 1)は、この抽象的な部分と同様に分割される: セクション 1.1 から 1.8 は、プロジェクト #1 に関するバックグラウンド情報を提供し、セクション 1.9 から 1.13 は、プロジェクト #2 に関連する。
第2章は歴史的背景、第3章は必要な数学的背景、最後に第6章は結論と今後の方向性を含む。
関連論文リスト
- Interpretable Spatio-Temporal Embedding for Brain Structural-Effective Network with Ordinary Differential Equation [56.34634121544929]
本研究では,まず動的因果モデルを用いて脳効果ネットワークを構築する。
次に、STE-ODE(Spatio-Temporal Embedding ODE)と呼ばれる解釈可能なグラフ学習フレームワークを導入する。
このフレームワークは、構造的および効果的なネットワーク間の動的相互作用を捉えることを目的とした、特異的に設計されたノード埋め込み層を含んでいる。
論文 参考訳(メタデータ) (2024-05-21T20:37:07Z) - MindBridge: A Cross-Subject Brain Decoding Framework [60.58552697067837]
脳の復号化は、獲得した脳信号から刺激を再構築することを目的としている。
現在、脳の復号化はモデルごとのオブジェクトごとのパラダイムに限られている。
我々は,1つのモデルのみを用いることで,オブジェクト間脳デコーディングを実現するMindBridgeを提案する。
論文 参考訳(メタデータ) (2024-04-11T15:46:42Z) - MindDiffuser: Controlled Image Reconstruction from Human Brain Activity
with Semantic and Structural Diffusion [7.597218661195779]
我々はMindDiffuserと呼ばれる2段階の画像再構成モデルを提案する。
ステージ1では、VQ-VAE潜在表現とfMRIからデコードされたCLIPテキスト埋め込みが安定拡散される。
ステージ2では、fMRIからデコードされたCLIP視覚特徴を監視情報として利用し、バックパゲーションによりステージ1でデコードされた2つの特徴ベクトルを継続的に調整し、構造情報を整列させる。
論文 参考訳(メタデータ) (2023-08-08T13:28:34Z) - Language Knowledge-Assisted Representation Learning for Skeleton-Based
Action Recognition [71.35205097460124]
人間が他人の行動を理解して認識する方法は、複雑な神経科学の問題である。
LA-GCNは、大規模言語モデル(LLM)知識アシストを用いたグラフ畳み込みネットワークを提案する。
論文 参考訳(メタデータ) (2023-05-21T08:29:16Z) - Semantic Brain Decoding: from fMRI to conceptually similar image
reconstruction of visual stimuli [0.29005223064604074]
本稿では,意味的・文脈的類似性にも依存する脳復号法を提案する。
我々は、自然視のfMRIデータセットを使用し、人間の視覚におけるボトムアップとトップダウンの両方のプロセスの存在にインスパイアされたディープラーニングデコードパイプラインを作成します。
視覚刺激の再現は, それまでの文献において, 本来の内容とセマンティックレベルで非常によく一致し, 芸術の状態を超越している。
論文 参考訳(メタデータ) (2022-12-13T16:54:08Z) - Deep Representations for Time-varying Brain Datasets [4.129225533930966]
本稿では、領域マップされたfMRIシーケンスと構造接続性の両方を入力として組み込んだ効率的なグラフニューラルネットワークモデルを構築する。
サンプルレベルの適応的隣接行列を学習することで、潜伏する脳のダイナミクスのよい表現を見つけ出す。
これらのモジュールは容易に適応でき、神経科学領域以外の用途にも有用である可能性がある。
論文 参考訳(メタデータ) (2022-05-23T21:57:31Z) - Brain Cortical Functional Gradients Predict Cortical Folding Patterns
via Attention Mesh Convolution [51.333918985340425]
我々は,脳の皮質ジャイロ-サルカル分割図を予測するための新しいアテンションメッシュ畳み込みモデルを開発した。
実験の結果,我々のモデルによる予測性能は,他の最先端モデルよりも優れていた。
論文 参考訳(メタデータ) (2022-05-21T14:08:53Z) - Functional2Structural: Cross-Modality Brain Networks Representation
Learning [55.24969686433101]
脳ネットワーク上のグラフマイニングは、臨床表現型および神経変性疾患のための新しいバイオマーカーの発見を促進する可能性がある。
本稿では,Deep Signed Brain Networks (DSBN) と呼ばれる新しいグラフ学習フレームワークを提案する。
臨床表現型および神経変性疾患予測の枠組みを,2つの独立した公開データセットを用いて検証した。
論文 参考訳(メタデータ) (2022-05-06T03:45:36Z) - From internal models toward metacognitive AI [0.0]
前頭前皮質では、「認知現実監視ネットワーク」と呼ばれる分散型エグゼクティブネットワークが、生成的逆モデルペアの意識的な関与を編成する。
高い責任信号は、外界を最も捉えているペアに与えられる。
意識はすべての対における責任信号のエントロピーによって決定される。
論文 参考訳(メタデータ) (2021-09-27T05:00:56Z) - Towards a Neural Model for Serial Order in Frontal Cortex: a Brain
Theory from Memory Development to Higher-Level Cognition [53.816853325427424]
そこで本研究では,未熟な前頭前野 (PFC) が側頭葉信号の階層的パターンを検出する主要な機能を利用していることを提案する。
我々の仮説では、PFCは順序パターンの形で時間的配列の階層構造を検出し、それらを脳の異なる部分で階層的に情報をインデックスするために利用する。
これにより、抽象的な知識を操作し、時間的に順序付けられた情報を計画するための言語対応の脳にツールを提供する。
論文 参考訳(メタデータ) (2020-05-22T14:29:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。