Fusion of Deep Learning and GIS for Advanced Remote Sensing Image Analysis
- URL: http://arxiv.org/abs/2412.19856v1
- Date: Wed, 25 Dec 2024 22:10:35 GMT
- Title: Fusion of Deep Learning and GIS for Advanced Remote Sensing Image Analysis
- Authors: Sajjad Afroosheh, Mohammadreza Askari,
- Abstract summary: This paper presents an innovative framework for remote sensing image analysis by fusing deep learning techniques with Geographic Information Systems (GIS)
The primary objective is to enhance the accuracy and efficiency of spatial data analysis by overcoming challenges associated with high dimensionality, complex patterns, and temporal data processing.
Our findings reveal a significant increase in classification accuracy from 78% to 92% and a reduction in prediction error from 12% to 6% after optimization.
- Score: 0.0
- License:
- Abstract: This paper presents an innovative framework for remote sensing image analysis by fusing deep learning techniques, specifically Convolutional Neural Networks (CNNs) and Long Short-Term Memory (LSTM) networks, with Geographic Information Systems (GIS). The primary objective is to enhance the accuracy and efficiency of spatial data analysis by overcoming challenges associated with high dimensionality, complex patterns, and temporal data processing. We implemented optimization algorithms, namely Particle Swarm Optimization (PSO) and Genetic Algorithms (GA), to fine-tune model parameters, resulting in improved performance metrics. Our findings reveal a significant increase in classification accuracy from 78% to 92% and a reduction in prediction error from 12% to 6% after optimization. Additionally, the temporal accuracy of the models improved from 75% to 88%, showcasing the frameworks capability to monitor dynamic changes effectively. The integration of GIS not only enriched the spatial analysis but also facilitated a deeper understanding of the relationships between geographical features. This research demonstrates that combining advanced deep learning methods with GIS and optimization strategies can significantly advance remote sensing applications, paving the way for future developments in environmental monitoring, urban planning, and resource management.
Related papers
- Subject Representation Learning from EEG using Graph Convolutional Variational Autoencoders [20.364067310176054]
GC-VASE is a graph convolutional-based variational autoencoder that leverages contrastive learning for subject representation learning from EEG data.
Our method successfully learns robust subject-specific latent representations using the split-latent space architecture tailored for subject identification.
arXiv Detail & Related papers (2025-01-13T17:29:31Z) - TrajLearn: Trajectory Prediction Learning using Deep Generative Models [4.097342535693401]
Trajectory prediction aims to estimate an entity's future path using its current position and historical movement data.
To address these challenges, we introduce TrajLearn, a novel model for trajectory prediction.
TrajLearn predicts the next $k$ steps by integrating a customized beam search for exploring multiple potential paths.
arXiv Detail & Related papers (2024-12-30T23:38:52Z) - Geospatial Data Fusion: Combining Lidar, SAR, and Optical Imagery with AI for Enhanced Urban Mapping [0.0]
This study explores the integration of Lidar, Synthetic Aperture Radar (SAR), and optical imagery through advanced artificial intelligence techniques for enhanced urban mapping.
The research employs Fully Convolutional Networks (FCNs) as the primary deep learning model for urban feature extraction.
Key findings indicate that the FCN-PSO model achieved a pixel accuracy of 92.3% and a mean Intersection over Union (IoU) of 87.6%, surpassing traditional single-sensor approaches.
arXiv Detail & Related papers (2024-12-25T22:17:31Z) - GDSG: Graph Diffusion-based Solution Generator for Optimization Problems in MEC Networks [109.17835015018532]
We present a Graph Diffusion-based Solution Generation (GDSG) method.
This approach is designed to work with suboptimal datasets while converging to the optimal solution large probably.
We build GDSG as a multi-task diffusion model utilizing a Graph Neural Network (GNN) to acquire the distribution of high-quality solutions.
arXiv Detail & Related papers (2024-12-11T11:13:43Z) - Haste Makes Waste: A Simple Approach for Scaling Graph Neural Networks [37.41604955004456]
Graph neural networks (GNNs) have demonstrated remarkable success in graph representation learning.
Various sampling approaches have been proposed to scale GNNs to applications with large-scale graphs.
arXiv Detail & Related papers (2024-10-07T18:29:02Z) - Robust Neural Pruning with Gradient Sampling Optimization for Residual Neural Networks [0.0]
This research embarks on pioneering the integration of gradient sampling optimization techniques, particularly StochGradAdam, into the pruning process of neural networks.
Our main objective is to address the significant challenge of maintaining accuracy in pruned neural models, critical in resource-constrained scenarios.
arXiv Detail & Related papers (2023-12-26T12:19:22Z) - Innovative Horizons in Aerial Imagery: LSKNet Meets DiffusionDet for
Advanced Object Detection [55.2480439325792]
We present an in-depth evaluation of an object detection model that integrates the LSKNet backbone with the DiffusionDet head.
The proposed model achieves a mean average precision (MAP) of approximately 45.7%, which is a significant improvement.
This advancement underscores the effectiveness of the proposed modifications and sets a new benchmark in aerial image analysis.
arXiv Detail & Related papers (2023-11-21T19:49:13Z) - Reparameterization through Spatial Gradient Scaling [69.27487006953852]
Reparameterization aims to improve the generalization of deep neural networks by transforming convolutional layers into equivalent multi-branched structures during training.
We present a novel spatial gradient scaling method to redistribute learning focus among weights in convolutional networks.
arXiv Detail & Related papers (2023-03-05T17:57:33Z) - Learning Large-scale Neural Fields via Context Pruned Meta-Learning [60.93679437452872]
We introduce an efficient optimization-based meta-learning technique for large-scale neural field training.
We show how gradient re-scaling at meta-test time allows the learning of extremely high-quality neural fields.
Our framework is model-agnostic, intuitive, straightforward to implement, and shows significant reconstruction improvements for a wide range of signals.
arXiv Detail & Related papers (2023-02-01T17:32:16Z) - Smart(Sampling)Augment: Optimal and Efficient Data Augmentation for
Semantic Segmentation [68.8204255655161]
We provide the first study on semantic image segmentation and introduce two new approaches: textitSmartAugment and textitSmartSamplingAugment.
SmartAugment uses Bayesian Optimization to search over a rich space of augmentation strategies and achieves a new state-of-the-art performance in all semantic segmentation tasks we consider.
SmartSamplingAugment, a simple parameter-free approach with a fixed augmentation strategy competes in performance with the existing resource-intensive approaches and outperforms cheap state-of-the-art data augmentation methods.
arXiv Detail & Related papers (2021-10-31T13:04:45Z) - Spatial-Spectral Residual Network for Hyperspectral Image
Super-Resolution [82.1739023587565]
We propose a novel spectral-spatial residual network for hyperspectral image super-resolution (SSRNet)
Our method can effectively explore spatial-spectral information by using 3D convolution instead of 2D convolution, which enables the network to better extract potential information.
In each unit, we employ spatial and temporal separable 3D convolution to extract spatial and spectral information, which not only reduces unaffordable memory usage and high computational cost, but also makes the network easier to train.
arXiv Detail & Related papers (2020-01-14T03:34:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.