Subject Representation Learning from EEG using Graph Convolutional Variational Autoencoders
- URL: http://arxiv.org/abs/2501.16626v1
- Date: Mon, 13 Jan 2025 17:29:31 GMT
- Title: Subject Representation Learning from EEG using Graph Convolutional Variational Autoencoders
- Authors: Aditya Mishra, Ahnaf Mozib Samin, Ali Etemad, Javad Hashemi,
- Abstract summary: GC-VASE is a graph convolutional-based variational autoencoder that leverages contrastive learning for subject representation learning from EEG data.
Our method successfully learns robust subject-specific latent representations using the split-latent space architecture tailored for subject identification.
- Score: 20.364067310176054
- License:
- Abstract: We propose GC-VASE, a graph convolutional-based variational autoencoder that leverages contrastive learning for subject representation learning from EEG data. Our method successfully learns robust subject-specific latent representations using the split-latent space architecture tailored for subject identification. To enhance the model's adaptability to unseen subjects without extensive retraining, we introduce an attention-based adapter network for fine-tuning, which reduces the computational cost of adapting the model to new subjects. Our method significantly outperforms other deep learning approaches, achieving state-of-the-art results with a subject balanced accuracy of 89.81% on the ERP-Core dataset and 70.85% on the SleepEDFx-20 dataset. After subject adaptive fine-tuning using adapters and attention layers, GC-VASE further improves the subject balanced accuracy to 90.31% on ERP-Core. Additionally, we perform a detailed ablation study to highlight the impact of the key components of our method.
Related papers
- Dynamic Loss-Based Sample Reweighting for Improved Large Language Model Pretraining [55.262510814326035]
Existing reweighting strategies primarily focus on group-level data importance.
We introduce novel algorithms for dynamic, instance-level data reweighting.
Our framework allows us to devise reweighting strategies deprioritizing redundant or uninformative data.
arXiv Detail & Related papers (2025-02-10T17:57:15Z) - SMPLest-X: Ultimate Scaling for Expressive Human Pose and Shape Estimation [81.36747103102459]
Expressive human pose and shape estimation (EHPS) unifies body, hands, and face motion capture with numerous applications.
Current state-of-the-art methods focus on training innovative architectural designs on confined datasets.
We investigate the impact of scaling up EHPS towards a family of generalist foundation models.
arXiv Detail & Related papers (2025-01-16T18:59:46Z) - iFuzzyTL: Interpretable Fuzzy Transfer Learning for SSVEP BCI System [24.898026682692688]
This study explores advanced classification techniques leveraging interpretable fuzzy transfer learning (iFuzzyTL)
iFuzzyTL refines input signal processing and classification in a human-interpretable format by integrating fuzzy inference systems and attention mechanisms.
The model's efficacy is demonstrated across three datasets.
arXiv Detail & Related papers (2024-10-16T06:07:23Z) - Erase then Rectify: A Training-Free Parameter Editing Approach for Cost-Effective Graph Unlearning [17.85404473268992]
Graph unlearning aims to eliminate the influence of nodes, edges, or attributes from a trained Graph Neural Network (GNN)
Existing graph unlearning techniques often necessitate additional training on the remaining data, leading to significant computational costs.
We propose a two-stage training-free approach, Erase then Rectify (ETR), designed for efficient and scalable graph unlearning.
arXiv Detail & Related papers (2024-09-25T07:20:59Z) - Heterogeneous Learning Rate Scheduling for Neural Architecture Search on Long-Tailed Datasets [0.0]
We propose a novel adaptive learning rate scheduling strategy tailored for the architecture parameters of DARTS.
Our approach dynamically adjusts the learning rate of the architecture parameters based on the training epoch, preventing the disruption of well-trained representations.
arXiv Detail & Related papers (2024-06-11T07:32:25Z) - DiffsFormer: A Diffusion Transformer on Stock Factor Augmentation [36.75453713794983]
We introduce the Diffusion Model to generate stock factors with Transformer architecture (DiffsFormer)
When presented with a specific downstream task, we employ DiffsFormer to augment the training procedure by editing existing samples.
The proposed method achieves relative improvements of 7.2% and 27.8% in annualized return ratio for the respective datasets.
arXiv Detail & Related papers (2024-02-05T03:54:36Z) - GIF: A General Graph Unlearning Strategy via Influence Function [63.52038638220563]
Graph Influence Function (GIF) is a model-agnostic unlearning method that can efficiently and accurately estimate parameter changes in response to a $epsilon$-mass perturbation in deleted data.
We conduct extensive experiments on four representative GNN models and three benchmark datasets to justify GIF's superiority in terms of unlearning efficacy, model utility, and unlearning efficiency.
arXiv Detail & Related papers (2023-04-06T03:02:54Z) - Machine Learning For Classification Of Antithetical Emotional States [1.1602089225841632]
This works analyses the baseline machine learning classifiers' performance on DEAP dataset.
It provides state-of-the-art comparable results leveraging the performance boost due to its deep learning architecture.
arXiv Detail & Related papers (2022-09-06T06:54:33Z) - Adaptive Fine-Grained Predicates Learning for Scene Graph Generation [122.4588401267544]
General Scene Graph Generation (SGG) models tend to predict head predicates and re-balancing strategies prefer tail categories.
We propose an Adaptive Fine-Grained Predicates Learning (FGPL-A) which aims at differentiating hard-to-distinguish predicates for SGG.
Our proposed model-agnostic strategy significantly boosts performance of benchmark models on VG-SGG and GQA-SGG datasets by up to 175% and 76% on Mean Recall@100, achieving new state-of-the-art performance.
arXiv Detail & Related papers (2022-07-11T03:37:57Z) - Self-Supervised Pre-Training for Transformer-Based Person
Re-Identification [54.55281692768765]
Transformer-based supervised pre-training achieves great performance in person re-identification (ReID)
Due to the domain gap between ImageNet and ReID datasets, it usually needs a larger pre-training dataset to boost the performance.
This work aims to mitigate the gap between the pre-training and ReID datasets from the perspective of data and model structure.
arXiv Detail & Related papers (2021-11-23T18:59:08Z) - Ada-Segment: Automated Multi-loss Adaptation for Panoptic Segmentation [95.31590177308482]
We propose an automated multi-loss adaptation (named Ada-Segment) to flexibly adjust multiple training losses over the course of training.
With an end-to-end architecture, Ada-Segment generalizes to different datasets without the need of re-tuning hyper parameters.
Ada-Segment brings 2.7% panoptic quality (PQ) improvement on COCO val split from the vanilla baseline, achieving the state-of-the-art 48.5% PQ on COCO test-dev split and 32.9% PQ on ADE20K dataset.
arXiv Detail & Related papers (2020-12-07T11:43:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.