論文の概要: A Neural Network-Based Search for Unmodeled Transients in LIGO-Virgo-KAGRA's Third Observing Run
- arxiv url: http://arxiv.org/abs/2412.19883v1
- Date: Fri, 27 Dec 2024 19:00:01 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-31 16:03:55.901668
- Title: A Neural Network-Based Search for Unmodeled Transients in LIGO-Virgo-KAGRA's Third Observing Run
- Title(参考訳): LIGO-Virgo-KAGRAの第3次観測実行におけるニューラルネットワークによる非モデル化トランジェント探索
- Authors: Ryan Raikman, Eric A. Moreno, Katya Govorkova, Siddharth Soni, Ethan Marx, William Benoit, Alec Gunny, Deep Chatterjee, Christina Reissel, Malina M. Desai, Rafia Omer, Muhammed Saleem, Philip Harris, Erik Katsavounidis, Michael W. Coughlin, Dylan Rankin,
- Abstract要約: 本稿では, LIGO, Virgo, KAGRAの3回観測結果から, ニューラルネットワークを用いた短周期重力波トランジェント探索の結果について述べる。
探索は、30-1500Hzの周波数帯域でミリ秒から数秒間、受信信号の方向、偏光、形態について仮定することなく、未モデル化のトランジェントをターゲットにしている。
- 参考スコア(独自算出の注目度): 0.5857761499059161
- License:
- Abstract: This paper presents the results of a Neural Network (NN)-based search for short-duration gravitational-wave transients in data from the third observing run of LIGO, Virgo, and KAGRA. The search targets unmodeled transients with durations of milliseconds to a few seconds in the 30-1500 Hz frequency band, without assumptions about the incoming signal direction, polarization, or morphology. Using the Gravitational Wave Anomalous Knowledge (GWAK) method, three compact binary coalescences (CBCs) identified by existing pipelines are successfully detected, along with a range of detector glitches. The algorithm constructs a low-dimensional embedded space to capture the physical features of signals, enabling the detection of CBCs, detector glitches, and unmodeled transients. This study demonstrates GWAK's ability to enhance gravitational-wave searches beyond the limits of existing pipelines, laying the groundwork for future detection strategies.
- Abstract(参考訳): 本稿では, LIGO, Virgo, KAGRAの3回観測結果から, ニューラルネットワークを用いた短周期重力波トランジェント探索の結果について述べる。
探索は、30-1500Hzの周波数帯域でミリ秒から数秒間、受信信号の方向、偏光、形態について仮定することなく、未モデル化のトランジェントをターゲットにしている。
重力波異常知識 (GWAK) 法を用いて, 既存のパイプラインで同定された3つのコンパクト二元合体 (CBCs) を検出し, 検出範囲を拡大した。
このアルゴリズムは、信号の物理的特徴を捉えるために低次元の埋め込み空間を構築し、CBC、検出器グリッチ、非モデル化トランジェントの検出を可能にする。
本研究は、GWAKが既存のパイプラインの限界を超えて重力波探索を強化する能力を示し、将来の検出戦略の基礎を築いた。
関連論文リスト
- Real-time gravitational-wave inference for binary neutron stars using machine learning [71.29593576787549]
近似を行なわずに1秒で完全なBNS推論を行う機械学習フレームワークを提案する。
本手法は, (i) 合併前の正確な局所化を提供することにより, (i) 近似低遅延法と比較して, (ii) 局所化精度を$sim30%$で改善すること, (iii) 光度距離, 傾斜, 質量に関する詳細な情報を提供することにより, (i) マルチメーサの観測を向上する。
論文 参考訳(メタデータ) (2024-07-12T18:00:02Z) - Dilated convolutional neural network for detecting extreme-mass-ratio inspirals [8.809900732195281]
本稿では,周波数領域におけるシーケンスモデリングによるEMRI信号検出に着目したエンドツーエンドモデルDECODEを提案する。
我々は,SNRを50~120に蓄積した1年間のデータから,真正の96.3%を偽正の1%で達成した。
論文 参考訳(メタデータ) (2023-08-31T03:16:38Z) - LSTM and CNN application for core-collapse supernova search in
gravitational wave real data [0.0]
コア崩壊型超新星(CCSNe)は、銀河系や近隣の銀河の干渉計によって検出される重力波信号を放出することが期待されている。
実データを用いた各種CCSNeシミュレート信号と雑音過渡音のマルチラベル分類のための機械学習(ML)の可能性を示す。
論文 参考訳(メタデータ) (2023-01-23T12:12:33Z) - A Novel Self-Supervised Learning-Based Anomaly Node Detection Method
Based on an Autoencoder in Wireless Sensor Networks [4.249028315152528]
本稿では,オートエンコーダに基づく自己教師付き学習に基づく異常ノード検出手法を設計する。
本手法は,時間的WSNデータフロー特徴抽出,空間的位置特徴抽出,モーダルWSN相関特徴抽出を統合する。
実験の結果、設計法はベースラインを上回り、F1スコアは90.6%に達した。
論文 参考訳(メタデータ) (2022-12-26T01:54:02Z) - Adapting to noise distribution shifts in flow-based gravitational-wave
inference [59.040209568168436]
本研究では, 条件付きデータの流れを発生させることにより, 償却推論の方法を示す。
我々は、この手法が重力波の低遅延解析にディープラーニング技術を利用するための重要な要素になることを期待している。
論文 参考訳(メタデータ) (2022-11-16T09:56:23Z) - DeepSNR: A deep learning foundation for offline gravitational wave
detection [0.0]
本稿では,Deep Learning Signal-to-Noise Ratio(DeepSNR)検出パイプラインを提案する。
DeepSNRの性能は、最初の観測結果から開放されたLIGOデータにおいて、二元ブラックホール融合候補とノイズ源とを識別することによって実証される。
その結果、より広い文脈で重力波や希少信号の科学的発見にDeepSNRが使われる方法が明らかにされた。
論文 参考訳(メタデータ) (2022-07-11T10:18:33Z) - A novel multi-layer modular approach for real-time fuzzy-identification
of gravitational-wave signals [0.0]
本稿では,音声処理技術に触発された重力波のリアルタイム検出のための新しい階層化フレームワークを提案する。
本稿では,フレームワークの基本概念と,最初の3つのレイヤの導出について述べる。
畳み込みニューラルネットワークのようなより複雑なアプローチと比較して、我々のフレームワークは精度が低い。
論文 参考訳(メタデータ) (2022-06-13T09:48:38Z) - Three-Way Deep Neural Network for Radio Frequency Map Generation and
Source Localization [67.93423427193055]
空間、時間、周波数領域にわたる無線スペクトルのモニタリングは、5Gと6G以上の通信技術において重要な特徴となる。
本稿では,空間領域全体にわたる不規則分散計測を補間するGAN(Generative Adversarial Network)機械学習モデルを提案する。
論文 参考訳(メタデータ) (2021-11-23T22:25:10Z) - From One to Many: A Deep Learning Coincident Gravitational-Wave Search [58.720142291102135]
単一検出器からの非スピン型二元ブラックホールデータに基づいてトレーニングされたニューラルネットワークを用いて、二元ブラックホールの融合から重力波を2検出器で探索する。
これらの単純な2検出器ネットワークはいずれも、検出器のデータに個別にネットワークを適用するよりも感度を向上させることができない。
論文 参考訳(メタデータ) (2021-08-24T13:25:02Z) - Real-time gravitational-wave science with neural posterior estimation [64.67121167063696]
ディープラーニングを用いた高速重力波パラメータ推定のための前例のない精度を示す。
LIGO-Virgo Gravitational-Wave Transient Catalogから8つの重力波事象を解析した。
標準推論符号と非常に密接な定量的な一致を見いだすが、推定時間がO(day)から1イベントあたり1分に短縮される。
論文 参考訳(メタデータ) (2021-06-23T18:00:05Z) - Adaptive Anomaly Detection for IoT Data in Hierarchical Edge Computing [71.86955275376604]
本稿では,階層型エッジコンピューティング(HEC)システムに対する適応型異常検出手法を提案する。
本研究では,入力データから抽出した文脈情報に基づいてモデルを選択する適応的手法を設計し,異常検出を行う。
提案手法を実際のIoTデータセットを用いて評価し,検出タスクをクラウドにオフロードするのとほぼ同じ精度を維持しながら,検出遅延を84%削減できることを実証した。
論文 参考訳(メタデータ) (2020-01-10T05:29:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。