Revisiting the Bohr Model of the Atom through Brownian Motion of the Electron
- URL: http://arxiv.org/abs/2412.19918v3
- Date: Mon, 13 Jan 2025 09:08:48 GMT
- Title: Revisiting the Bohr Model of the Atom through Brownian Motion of the Electron
- Authors: Vasil Yordanov,
- Abstract summary: We enhance the Bohr model of the hydrogen atom by incorporating Mechanics to describe the electron's behavior through Brownian motion.<n>In contrast to traditional quantum mechanics, our model derives the Born rule by performing statistical averaging of single-particle positions.<n>We show that at very short timescales, wave function-based single electron probability distributions can be inadequate due to insufficient statistical averaging of single-particle positions.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this work, we enhance the Bohr model of the hydrogen atom by incorporating Stochastic Mechanics to describe the electron's behavior through Brownian motion. In contrast to traditional quantum mechanics, where the Born rule postulates the physical interpretation of the wave function, our model derives the Born rule by performing statistical averaging of single-particle positions. Because the particle always has a definite, though random, position, there is no need for wave function collapse, as required by the Copenhagen interpretation. In this approach, we use the wave function to compute the electron's optimal drift velocity within its stochastic equation of motion. We develop modified stochastic equations in curvilinear spherical coordinates and demonstrate that the resulting radial and angular kinetic energies align with those from the operator approach. Numerical simulations validate our theoretical framework by showing stable electron orbits and accurately reproducing the probability distribution of finding the electron around the hydrogen nucleus as defined by the Born rule. We show that at very short timescales, wave function-based single electron probability distributions can be inadequate due to insufficient statistical averaging of single-particle trajectories. This model thus offers enhanced insights into the quantum world beyond conventional interpretations. Our findings underscore the potential of applying wave function-derived drift velocities within Stochastic Mechanics to the hydrogen atom, providing new perspectives on atomic dynamics.
Related papers
- Computational Stochastic Mechanics of a Simple Bound State [0.0]
We calculate probability density distributions using concepts of mechanics independent of bootstrapping with a known wave function.
We explore the effect of energy defect off of the ground state energy on the velocity field, which dictates how a particle interacts with the background of fluctuations in position.
arXiv Detail & Related papers (2025-04-11T16:22:23Z) - Variational Quantum Simulation of the Fokker-Planck Equation applied to Quantum Radiation Reaction [0.0]
Near-future experiments with Petawatt class lasers are expected to produce a high flux of gamma-ray and electron-positron pairs.
This work will be useful as a first step towards quantum simulation of plasma physics scenarios.
arXiv Detail & Related papers (2024-11-26T15:27:00Z) - Quantum Particle Statistics in Classical Shallow Water Waves [4.995343972237369]
We show that when locally oscillating particles are guided by real wave gradients, particles may exhibit trajectories of alternating periodic or chaotic dynamics.
The particle probability distribution function of this analogy reveals the quantum statistics of the standard solutions of the Schr"odinger equation.
arXiv Detail & Related papers (2024-09-29T09:40:19Z) - Highly Accurate Real-space Electron Densities with Neural Networks [7.176850154835262]
We introduce a novel method to obtain accurate densities from real-space many-electron wave functions.
We use variational quantum Monte Carlo with deep-learning ans"atze (deep QMC) to obtain highly accurate wave functions free of basis set errors.
arXiv Detail & Related papers (2024-09-02T14:56:22Z) - A Theory of Quantum Jumps [44.99833362998488]
We study fluorescence and the phenomenon of quantum jumps'' in idealized models of atoms coupled to the quantized electromagnetic field.
Our results amount to a derivation of the fundamental randomness in the quantum-mechanical description of microscopic systems.
arXiv Detail & Related papers (2024-04-16T11:00:46Z) - Ultracold Neutrons in the Low Curvature Limit: Remarks on the
post-Newtonian effects [49.1574468325115]
We apply a perturbative scheme to derive the non-relativistic Schr"odinger equation in curved spacetime.
We calculate the next-to-leading order corrections to the neutron's energy spectrum.
While the current precision for observations of ultracold neutrons may not yet enable to probe them, they could still be relevant in the future or in alternative circumstances.
arXiv Detail & Related papers (2023-12-30T16:45:56Z) - Evanescent Electron Wave Spin [2.977255700811213]
This study demonstrates the existence of an evanescent electron wave outside both finite and infinite quantum wells.
We show that this evanescent wave shares the spin characteristics of the wave confined within the well.
Our findings suggest that the electron cannot be confined to a mathematical singularity and that quantum information, or quantum entropy, can leak through any confinement.
arXiv Detail & Related papers (2023-09-29T15:32:37Z) - Thermal masses and trapped-ion quantum spin models: a self-consistent approach to Yukawa-type interactions in the $λ\!φ^4$ model [44.99833362998488]
A quantum simulation of magnetism in trapped-ion systems makes use of the crystal vibrations to mediate pairwise interactions between spins.
These interactions can be accounted for by a long-wavelength relativistic theory, where the phonons are described by a coarse-grained Klein-Gordon field.
We show that thermal effects, which can be controlled by laser cooling, can unveil this flow through the appearance of thermal masses in interacting QFTs.
arXiv Detail & Related papers (2023-05-10T12:59:07Z) - Some Classical Models of Particles and Quantum Gauge Theories [0.0]
The article contains a review and new results of some mathematical models relevant to the interpretation of quantum mechanics.
One-particle wave functions can be modeled as plasma-like collections of a large number of particles and antiparticles.
arXiv Detail & Related papers (2022-11-03T16:53:19Z) - Structured matter wave evolution in external time-dependent fields [0.0]
We have analyzed the motion of a structured matter wave in the presence of a constant magnetic field and under the influence of a time-dependent external force.
From the point of view of the quantum interferometry of matter waves, and also non-relativistic quantum electron microscopy, the results obtained here are important and more reliable than the approximate methods.
arXiv Detail & Related papers (2022-05-09T18:12:56Z) - Self-oscillating pump in a topological dissipative atom-cavity system [55.41644538483948]
We report on an emergent mechanism for pumping in a quantum gas coupled to an optical resonator.
Due to dissipation, the cavity field evolves between its two quadratures, each corresponding to a different centrosymmetric crystal configuration.
This self-oscillation results in a time-periodic potential analogous to that describing the transport of electrons in topological tight-binding models.
arXiv Detail & Related papers (2021-12-21T19:57:30Z) - Stochastic Variational Approach to Small Atoms and Molecules Coupled to
Quantum Field Modes [55.41644538483948]
We present a variational calculation (SVM) of energies and wave functions of few particle systems coupled to quantum fields in cavity QED.
Examples for a two-dimensional trion and confined electrons as well as for the He atom and the Hydrogen molecule are presented.
arXiv Detail & Related papers (2021-08-25T13:40:42Z) - Machine Learning S-Wave Scattering Phase Shifts Bypassing the Radial
Schr\"odinger Equation [77.34726150561087]
We present a proof of concept machine learning model resting on a convolutional neural network capable to yield accurate scattering s-wave phase shifts.
We discuss how the Hamiltonian can serve as a guiding principle in the construction of a physically-motivated descriptor.
arXiv Detail & Related papers (2021-06-25T17:25:38Z) - Visualizing spinon Fermi surfaces with time-dependent spectroscopy [62.997667081978825]
We propose applying time-dependent photo-emission spectroscopy, an established tool in solid state systems, in cold atom quantum simulators.
We show in exact diagonalization simulations of the one-dimensional $t-J$ model that the spinons start to populate previously unoccupied states in an effective band structure.
The dependence of the spectral function on the time after the pump pulse reveals collective interactions among spinons.
arXiv Detail & Related papers (2021-05-27T18:00:02Z) - Symmetry, Transactions, and the Mechanism of Wave Function Collapse [0.0]
We derive a two-atom quantum formalism describing a transaction.
We show that the bi-directional electromagnetic coupling between atoms can be factored into a matched pair of vector potential Green's functions.
We also analyse a simplified version of the photon-splitting and Freedman-Clauser three-electron experiments.
arXiv Detail & Related papers (2020-06-19T20:43:09Z) - General quantum-mechanical solution for twisted electrons in a uniform
magnetic field [68.8204255655161]
A theory of twisted (and other structured) paraxial electrons in a uniform magnetic field is developed.
The observable effect of a different behavior of relativistic Laguerre-Gauss beams with opposite directions of the orbital angular momentum penetrating from the free space into a magnetic field is predicted.
arXiv Detail & Related papers (2020-05-13T16:35:10Z) - External and internal wave functions: de Broglie's double-solution
theory? [77.34726150561087]
We propose an interpretative framework for quantum mechanics corresponding to the specifications of Louis de Broglie's double-solution theory.
The principle is to decompose the evolution of a quantum system into two wave functions.
For Schr"odinger, the particles are extended and the square of the module of the (internal) wave function of an electron corresponds to the density of its charge in space.
arXiv Detail & Related papers (2020-01-13T13:41:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.