Towards Strong AI: Transformational Beliefs and Scientific Creativity
- URL: http://arxiv.org/abs/2412.19938v1
- Date: Fri, 27 Dec 2024 22:02:36 GMT
- Title: Towards Strong AI: Transformational Beliefs and Scientific Creativity
- Authors: Samuel J. Eschker, Chuanhai Liu,
- Abstract summary: Strong artificial intelligence (AI) is envisioned to possess general cognitive abilities and scientific creativity comparable to human intelligence.
We introduce a simple theoretical and statistical framework of weak beliefs, termed the Transformational Belief (TB) framework.
We demonstrate the TB framework's potential as a promising foundation for understanding, analyzing, and even fostering creativity.
- Score: 0.0
- License:
- Abstract: Strong artificial intelligence (AI) is envisioned to possess general cognitive abilities and scientific creativity comparable to human intelligence, encompassing both knowledge acquisition and problem-solving. While remarkable progress has been made in weak AI, the realization of strong AI remains a topic of intense debate and critical examination. In this paper, we explore pivotal innovations in the history of astronomy and physics, focusing on the discovery of Neptune and the concept of scientific revolutions as perceived by philosophers of science. Building on these insights, we introduce a simple theoretical and statistical framework of weak beliefs, termed the Transformational Belief (TB) framework, designed as a foundation for modeling scientific creativity. Through selected illustrative examples in statistical science, we demonstrate the TB framework's potential as a promising foundation for understanding, analyzing, and even fostering creativity -- paving the way toward the development of strong AI. We conclude with reflections on future research directions and potential advancements.
Related papers
- Towards Scientific Discovery with Generative AI: Progress, Opportunities, and Challenges [11.232704182001253]
This paper examines the current state of AI for scientific discovery, highlighting recent progress in large language models and other AI techniques applied to scientific tasks.
We then outline key challenges and promising research directions toward developing more comprehensive AI systems for scientific discovery.
arXiv Detail & Related papers (2024-12-16T03:52:20Z) - Can AI Be as Creative as Humans? [84.43873277557852]
We prove in theory that AI can be as creative as humans under the condition that it can properly fit the data generated by human creators.
The debate on AI's creativity is reduced into the question of its ability to fit a sufficient amount of data.
arXiv Detail & Related papers (2024-01-03T08:49:12Z) - AI for Mathematics: A Cognitive Science Perspective [86.02346372284292]
Mathematics is one of the most powerful conceptual systems developed and used by the human species.
Rapid progress in AI, particularly propelled by advances in large language models (LLMs), has sparked renewed, widespread interest in building such systems.
arXiv Detail & Related papers (2023-10-19T02:00:31Z) - A Neuro-mimetic Realization of the Common Model of Cognition via Hebbian
Learning and Free Energy Minimization [55.11642177631929]
Large neural generative models are capable of synthesizing semantically rich passages of text or producing complex images.
We discuss the COGnitive Neural GENerative system, such an architecture that casts the Common Model of Cognition.
arXiv Detail & Related papers (2023-10-14T23:28:48Z) - Advancing Perception in Artificial Intelligence through Principles of
Cognitive Science [6.637438611344584]
We focus on the cognitive functions of perception, which is the process of taking signals from one's surroundings as input, and processing them to understand the environment.
We present a collection of methods in AI for researchers to build AI systems inspired by cognitive science.
arXiv Detail & Related papers (2023-10-13T01:21:55Z) - Artificial Intelligence for Science in Quantum, Atomistic, and Continuum Systems [268.585904751315]
New area of research known as AI for science (AI4Science)
Areas aim at understanding the physical world from subatomic (wavefunctions and electron density), atomic (molecules, proteins, materials, and interactions), to macro (fluids, climate, and subsurface) scales.
Key common challenge is how to capture physics first principles, especially symmetries, in natural systems by deep learning methods.
arXiv Detail & Related papers (2023-07-17T12:14:14Z) - The Future of Fundamental Science Led by Generative Closed-Loop
Artificial Intelligence [67.70415658080121]
Recent advances in machine learning and AI are disrupting technological innovation, product development, and society as a whole.
AI has contributed less to fundamental science in part because large data sets of high-quality data for scientific practice and model discovery are more difficult to access.
Here we explore and investigate aspects of an AI-driven, automated, closed-loop approach to scientific discovery.
arXiv Detail & Related papers (2023-07-09T21:16:56Z) - Deep Learning Opacity in Scientific Discovery [0.15229257192293197]
I argue that the disconnect between philosophical pessimism and scientific optimism is driven by a failure to examine how AI is actually used in science.
I show that, in order to understand the justification for AI-powered breakthroughs, philosophers must examine the role played by deep learning as part of a wider process of discovery.
arXiv Detail & Related papers (2022-06-01T14:30:49Z) - Learning from learning machines: a new generation of AI technology to
meet the needs of science [59.261050918992325]
We outline emerging opportunities and challenges to enhance the utility of AI for scientific discovery.
The distinct goals of AI for industry versus the goals of AI for science create tension between identifying patterns in data versus discovering patterns in the world from data.
arXiv Detail & Related papers (2021-11-27T00:55:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.