AI-Driven Automation Can Become the Foundation of Next-Era Science of Science Research
- URL: http://arxiv.org/abs/2505.12039v1
- Date: Sat, 17 May 2025 15:01:33 GMT
- Title: AI-Driven Automation Can Become the Foundation of Next-Era Science of Science Research
- Authors: Renqi Chen, Haoyang Su, Shixiang Tang, Zhenfei Yin, Qi Wu, Hui Li, Ye Sun, Nanqing Dong, Wanli Ouyang, Philip Torr,
- Abstract summary: The Science of Science (SoS) explores the mechanisms underlying scientific discovery.<n>The advent of artificial intelligence (AI) presents a transformative opportunity for the next generation of SoS.<n>We outline the advantages of AI over traditional methods, discuss potential limitations, and propose pathways to overcome them.
- Score: 58.944125758758936
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The Science of Science (SoS) explores the mechanisms underlying scientific discovery, and offers valuable insights for enhancing scientific efficiency and fostering innovation. Traditional approaches often rely on simplistic assumptions and basic statistical tools, such as linear regression and rule-based simulations, which struggle to capture the complexity and scale of modern research ecosystems. The advent of artificial intelligence (AI) presents a transformative opportunity for the next generation of SoS, enabling the automation of large-scale pattern discovery and uncovering insights previously unattainable. This paper offers a forward-looking perspective on the integration of Science of Science with AI for automated research pattern discovery and highlights key open challenges that could greatly benefit from AI. We outline the advantages of AI over traditional methods, discuss potential limitations, and propose pathways to overcome them. Additionally, we present a preliminary multi-agent system as an illustrative example to simulate research societies, showcasing AI's ability to replicate real-world research patterns and accelerate progress in Science of Science research.
Related papers
- Position: Intelligent Science Laboratory Requires the Integration of Cognitive and Embodied AI [98.19195693735487]
We propose the paradigm of Intelligent Science Laboratories (ISLs)<n>ISLs are a multi-layered, closed-loop framework that deeply integrates cognitive and embodied intelligence.<n>We argue that such systems are essential for overcoming the current limitations of scientific discovery.
arXiv Detail & Related papers (2025-06-24T13:31:44Z) - Open and Sustainable AI: challenges, opportunities and the road ahead in the life sciences [50.9036832382286]
We review the increased erosion of trust in AI research outputs, driven by the issues of poor reusability.<n>We discuss the fragmented components of the AI ecosystem and lack of guiding pathways to best support Open and Sustainable AI.<n>Our work connects researchers with relevant AI resources, facilitating the implementation of sustainable, reusable and transparent AI.
arXiv Detail & Related papers (2025-05-22T12:52:34Z) - From Automation to Autonomy: A Survey on Large Language Models in Scientific Discovery [43.31110556077432]
Large Language Models (LLMs) are catalyzing a paradigm shift in scientific discovery.<n>This survey systematically charts this burgeoning field, placing a central focus on the changing roles and escalating capabilities of LLMs in science.
arXiv Detail & Related papers (2025-05-19T15:41:32Z) - SciSciGPT: Advancing Human-AI Collaboration in the Science of Science [7.592219145267612]
Recent advances in large language models (LLMs) and AI agents have opened new possibilities for human-AI collaboration.<n>We introduce SciSciGPT, an open-source, prototype AI collaborator that uses the science of science as a testbed to explore the potential of LLM-powered research tools.
arXiv Detail & Related papers (2025-04-07T23:19:39Z) - Scaling Laws in Scientific Discovery with AI and Robot Scientists [72.3420699173245]
An autonomous generalist scientist (AGS) concept combines agentic AI and embodied robotics to automate the entire research lifecycle.<n>AGS aims to significantly reduce the time and resources needed for scientific discovery.<n>As these autonomous systems become increasingly integrated into the research process, we hypothesize that scientific discovery might adhere to new scaling laws.
arXiv Detail & Related papers (2025-03-28T14:00:27Z) - Towards Scientific Discovery with Generative AI: Progress, Opportunities, and Challenges [11.232704182001253]
This paper examines the current state of AI for scientific discovery, highlighting recent progress in large language models and other AI techniques applied to scientific tasks.<n>We then outline key challenges and promising research directions toward developing more comprehensive AI systems for scientific discovery.
arXiv Detail & Related papers (2024-12-16T03:52:20Z) - The Future of Fundamental Science Led by Generative Closed-Loop
Artificial Intelligence [67.70415658080121]
Recent advances in machine learning and AI are disrupting technological innovation, product development, and society as a whole.
AI has contributed less to fundamental science in part because large data sets of high-quality data for scientific practice and model discovery are more difficult to access.
Here we explore and investigate aspects of an AI-driven, automated, closed-loop approach to scientific discovery.
arXiv Detail & Related papers (2023-07-09T21:16:56Z) - Learning from learning machines: a new generation of AI technology to
meet the needs of science [59.261050918992325]
We outline emerging opportunities and challenges to enhance the utility of AI for scientific discovery.
The distinct goals of AI for industry versus the goals of AI for science create tension between identifying patterns in data versus discovering patterns in the world from data.
arXiv Detail & Related papers (2021-11-27T00:55:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.