MobileNetV2: A lightweight classification model for home-based sleep apnea screening
- URL: http://arxiv.org/abs/2412.19967v2
- Date: Fri, 03 Jan 2025 13:55:34 GMT
- Title: MobileNetV2: A lightweight classification model for home-based sleep apnea screening
- Authors: Hui Pan, Yanxuan Yu, Jilun Ye, Xu Zhang,
- Abstract summary: This study proposes a novel lightweight neural network model leveraging features extracted from electrocardiogram (ECG) and respiratory signals for early OSA screening.
ECG signals are used to generate feature spectrograms to predict sleep stages, while respiratory signals are employed to detect sleep-related breathing abnormalities.
By integrating these predictions, the method calculates the apnea-hypopnea index (AHI) with enhanced accuracy, facilitating precise OSA diagnosis.
- Score: 3.463585190363689
- License:
- Abstract: This study proposes a novel lightweight neural network model leveraging features extracted from electrocardiogram (ECG) and respiratory signals for early OSA screening. ECG signals are used to generate feature spectrograms to predict sleep stages, while respiratory signals are employed to detect sleep-related breathing abnormalities. By integrating these predictions, the method calculates the apnea-hypopnea index (AHI) with enhanced accuracy, facilitating precise OSA diagnosis. The method was validated on three publicly available sleep apnea databases: the Apnea-ECG database, the UCDDB dataset, and the MIT-BIH Polysomnographic database. Results showed an overall OSA detection accuracy of 0.978, highlighting the model's robustness. Respiratory event classification achieved an accuracy of 0.969 and an area under the receiver operating characteristic curve (ROC-AUC) of 0.98. For sleep stage classification, in UCDDB dataset, the ROC-AUC exceeded 0.85 across all stages, with recall for Sleep reaching 0.906 and specificity for REM and Wake states at 0.956 and 0.937, respectively. This study underscores the potential of integrating lightweight neural networks with multi-signal analysis for accurate, portable, and cost-effective OSA screening, paving the way for broader adoption in home-based and wearable health monitoring systems.
Related papers
- Thermal Imaging and Radar for Remote Sleep Monitoring of Breathing and Apnea [42.00356210257671]
We show the first comparison of radar and thermal imaging for sleep monitoring.
Our thermal imaging method detects apneas with an accuracy of 0.99, a precision of 0.68, a recall of 0.74, an F1 score of 0.71, and an intra-class correlation of 0.73.
We present a novel proposal for classifying obstructive and central sleep apnea by leveraging a multimodal setup.
arXiv Detail & Related papers (2024-07-16T17:26:50Z) - MPCNN: A Novel Matrix Profile Approach for CNN-based Sleep Apnea
Classification [0.0]
Sleep apnea (SA) is a significant respiratory condition that poses a major global health challenge.
Previous studies have investigated several machine and deep learning models for electrocardiogram (ECG)-based SA diagnoses.
We propose an innovative approach to address this diagnostic gap by delving deeper into the comprehensive segments of the ECG signal.
arXiv Detail & Related papers (2023-11-25T14:39:12Z) - Learning to diagnose cirrhosis from radiological and histological labels
with joint self and weakly-supervised pretraining strategies [62.840338941861134]
We propose to leverage transfer learning from large datasets annotated by radiologists, to predict the histological score available on a small annex dataset.
We compare different pretraining methods, namely weakly-supervised and self-supervised ones, to improve the prediction of the cirrhosis.
This method outperforms the baseline classification of the METAVIR score, reaching an AUC of 0.84 and a balanced accuracy of 0.75.
arXiv Detail & Related papers (2023-02-16T17:06:23Z) - SOUL: An Energy-Efficient Unsupervised Online Learning Seizure Detection
Classifier [68.8204255655161]
Implantable devices that record neural activity and detect seizures have been adopted to issue warnings or trigger neurostimulation to suppress seizures.
For an implantable seizure detection system, a low power, at-the-edge, online learning algorithm can be employed to dynamically adapt to neural signal drifts.
SOUL was fabricated in TSMC's 28 nm process occupying 0.1 mm2 and achieves 1.5 nJ/classification energy efficiency, which is at least 24x more efficient than state-of-the-art.
arXiv Detail & Related papers (2021-10-01T23:01:20Z) - Ensemble of Convolution Neural Networks on Heterogeneous Signals for
Sleep Stage Scoring [63.30661835412352]
This paper explores and compares the convenience of using additional signals apart from electroencephalograms.
The best overall model, an ensemble of Depth-wise Separational Convolutional Neural Networks, has achieved an accuracy of 86.06%.
arXiv Detail & Related papers (2021-07-23T06:37:38Z) - Convolutional Neural Networks for Sleep Stage Scoring on a Two-Channel
EEG Signal [63.18666008322476]
Sleep problems are one of the major diseases all over the world.
Basic tool used by specialists is the Polysomnogram, which is a collection of different signals recorded during sleep.
Specialists have to score the different signals according to one of the standard guidelines.
arXiv Detail & Related papers (2021-03-30T09:59:56Z) - Sleep Apnea and Respiratory Anomaly Detection from a Wearable Band and
Oxygen Saturation [1.2291501047353484]
There is a need in general medicine and critical care for a more convenient method to automatically detect sleep apnea from a simple, easy-to-wear device.
The objective is to automatically detect abnormal respiration and estimate the Apnea-Hypopnea-Index (AHI) with a wearable respiratory device.
Four models were trained: one each using the respiratory features only, a feature from the SpO2 (%)-signal only, and two additional models that use the respiratory features and the SpO2 (%)-feature.
arXiv Detail & Related papers (2021-02-24T02:04:57Z) - Automated Respiratory Event Detection Using Deep Neural Networks [3.489191364043618]
We train a neural network based on a single respiratory effort belt to detect obstructive apnea, central apnea, hypopnea and respiratory-effort related arousals.
Our fully automated method can detect respiratory events and assess the apnea-hypopnea index with sufficient accuracy for clinical utilization.
arXiv Detail & Related papers (2021-01-12T17:43:17Z) - MSED: a multi-modal sleep event detection model for clinical sleep
analysis [62.997667081978825]
We designed a single deep neural network architecture to jointly detect sleep events in a polysomnogram.
The performance of the model was quantified by F1, precision, and recall scores, and by correlating index values to clinical values.
arXiv Detail & Related papers (2021-01-07T13:08:44Z) - Automatic scoring of apnea and hypopnea events using blood oxygen
saturation signals [0.0]
DAS-KSVD was applied to detect and classify apnea and hypopnea events from signals obtained from the Sleep Heart Health Study database.
For moderate to severe OSAH screening, a receiver operating characteristic curve analysis of the results shows an area under the curve of 0.957 and diagnostic sensitivity and specificity of 87.56% and 88.32%, respectively.
arXiv Detail & Related papers (2020-03-22T15:17:20Z) - Detection of Obstructive Sleep Apnoea Using Features Extracted from
Segmented Time-Series ECG Signals Using a One Dimensional Convolutional
Neural Network [0.19686770963118383]
The study presents a one-dimensional convolutional neural network (1DCNN) model, designed for the automated detection of obstructive Sleep Apnoea (OSA) captured from single-channel electrocardiogram (ECG) signals.
The model is constructed using convolutional, max pooling layers and a fully connected Multilayer Perceptron (MLP) consisting of a hidden layer and SoftMax output for classification.
This demonstrates the model can identify the presence of Apnoea with a high degree of accuracy.
arXiv Detail & Related papers (2020-02-03T15:47:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.