論文の概要: Caesar: A Low-deviation Compression Approach for Efficient Federated Learning
- arxiv url: http://arxiv.org/abs/2412.19989v1
- Date: Sat, 28 Dec 2024 03:20:36 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-31 16:04:19.568656
- Title: Caesar: A Low-deviation Compression Approach for Efficient Federated Learning
- Title(参考訳): Caesar: 効果的なフェデレーション学習のための低次元圧縮手法
- Authors: Jiaming Yan, Jianchun Liu, Hongli Xu, Liusheng Huang, Jiantao Gong, Xudong Liu, Kun Hou,
- Abstract要約: 低次元圧縮手法を用いた新しいFLフレームワークCaesarを提案する。
私たちはCaesarを、40台のスマートフォンと80台のNVIDIA Jetsonデバイスを備えた2つの物理プラットフォームに実装しました。
- 参考スコア(独自算出の注目度): 26.590688371187
- License:
- Abstract: Compression is an efficient way to relieve the tremendous communication overhead of federated learning (FL) systems. However, for the existing works, the information loss under compression will lead to unexpected model/gradient deviation for the FL training, significantly degrading the training performance, especially under the challenges of data heterogeneity and model obsolescence. To strike a delicate trade-off between model accuracy and traffic cost, we propose Caesar, a novel FL framework with a low-deviation compression approach. For the global model download, we design a greedy method to optimize the compression ratio for each device based on the staleness of the local model, ensuring a precise initial model for local training. Regarding the local gradient upload, we utilize the device's local data properties (\ie, sample volume and label distribution) to quantify its local gradient's importance, which then guides the determination of the gradient compression ratio. Besides, with the fine-grained batch size optimization, Caesar can significantly diminish the devices' idle waiting time under the synchronized barrier. We have implemented Caesar on two physical platforms with 40 smartphones and 80 NVIDIA Jetson devices. Extensive results show that Caesar can reduce the traffic costs by about 25.54%$\thicksim$37.88% compared to the compression-based baselines with the same target accuracy, while incurring only a 0.68% degradation in final test accuracy relative to the full-precision communication.
- Abstract(参考訳): 圧縮は、連合学習(FL)システムの膨大な通信オーバーヘッドを軽減する効率的な方法である。
しかし、既存の作業では、圧縮による情報損失はFLトレーニングの予期せぬモデル/段階的な偏差をもたらし、特にデータ不均一性やモデル偏光の課題において、トレーニング性能を著しく低下させる。
モデル精度と交通コストの微妙なトレードオフに対処するため,低次元圧縮手法を用いた新しいFLフレームワークCaesarを提案する。
グローバルなモデルダウンロードのために,局所モデルの安定性に基づいて各デバイスに対する圧縮比を最適化し,局所的なトレーニングのための正確な初期モデルを確保するためのグリーディ手法を設計する。
局所勾配アップロードでは, 局所勾配の重要性を定量化するために装置の局所データ特性(形状, サンプル体積, ラベル分布)を利用し, 勾配圧縮比の決定を導出する。
さらに、きめ細かいバッチサイズ最適化により、Caesarは同期バリア下でのデバイスアイドル待ち時間を著しく削減することができる。
私たちはCaesarを、40台のスマートフォンと80台のNVIDIA Jetsonデバイスを備えた2つの物理プラットフォームに実装しました。
大規模な結果から、Caesarは圧縮ベースベースラインが同じ目標精度であるのに対して、トラフィックコストを約25.54%$\thicksim$37.88%削減できる一方で、完全精度通信と比較して最終テスト精度の0.68%しか劣化しないことがわかった。
関連論文リスト
- LoCo: Low-Bit Communication Adaptor for Large-scale Model Training [63.040522637816906]
低ビット通信は、しばしば圧縮情報損失によってトレーニング品質が低下する。
本稿では,ローカルGPUノードを補償するLoCo(Lo-bit Communication Adaptor)を提案する。
実験結果から,Megatron-LMやPyTorchs FSDPといった大規模トレーニングモデルフレームワークの移動により,LoCoは圧縮通信効率を大幅に向上することがわかった。
論文 参考訳(メタデータ) (2024-07-05T13:01:36Z) - Accelerating Communication in Deep Learning Recommendation Model Training with Dual-Level Adaptive Lossy Compression [10.233937665979694]
DLRMは最先端のレコメンデーションシステムモデルであり、様々な業界アプリケーションで広く採用されている。
このプロセスの重大なボトルネックは、すべてのデバイスから埋め込みデータを集めるのに必要な全通信に時間を要することだ。
本稿では,通信データサイズを削減し,DLRMトレーニングを高速化するために,エラーバウンドの損失圧縮を利用する手法を提案する。
論文 参考訳(メタデータ) (2024-07-05T05:55:18Z) - Instant Complexity Reduction in CNNs using Locality-Sensitive Hashing [50.79602839359522]
本稿では,パラメータフリーでデータフリーなモジュールであるHASTE(Hashing for Tractable Efficiency)を提案する。
局所性感応ハッシュ (LSH) を用いることで, 精度を犠牲にすることなく, 遅延特徴写像を劇的に圧縮することができる。
特に、HASTEモジュール用のCIFAR-10上のResNet34で畳み込みモジュールを切り替えるだけで、FLOPの46.72%を即座に落とすことができる。
論文 参考訳(メタデータ) (2023-09-29T13:09:40Z) - CrAM: A Compression-Aware Minimizer [103.29159003723815]
本稿では、CrAMと呼ばれる新しい圧縮対応最小化器を提案し、最適化ステップを原則的に修正する。
CrAMは、標準のSGD/アダムベースベースラインよりも精度が高い密度のモデルを生成するが、重量計算では安定である。
CrAMは、転送学習のためにうまく機能するスパースモデルを生成することができ、GPUハードウェアでサポートされている半構造化の2:4プルーニングパターンでも機能する。
論文 参考訳(メタデータ) (2022-07-28T16:13:28Z) - Optimizing the Communication-Accuracy Trade-off in Federated Learning
with Rate-Distortion Theory [1.5771347525430772]
連合学習における重要なボトルネックは、クライアントデバイスから中央サーバにモデル更新を送信する際のネットワーク通信コストである。
本手法は,その経験的分布を考慮し,量子化された更新を適切な普遍コードで符号化する。
量子化は誤差をもたらすので、平均的な全勾配と歪みにおける所望のトレードオフを最適化することで量子化レベルを選択する。
論文 参考訳(メタデータ) (2022-01-07T20:17:33Z) - Optimal Rate Adaption in Federated Learning with Compressed
Communications [28.16239232265479]
フェデレートラーニングは高い通信オーバーヘッドを引き起こし、モデル更新の圧縮によって大幅に軽減される。
ネットワーク環境における 圧縮とモデルの精度のトレードオフは 未だ不明です
各繰り返しの圧縮を戦略的に調整することで最終モデルの精度を最大化する枠組みを提案する。
論文 参考訳(メタデータ) (2021-12-13T14:26:15Z) - Towards Compact CNNs via Collaborative Compression [166.86915086497433]
チャネルプルーニングとテンソル分解を結合してCNNモデルを圧縮する協調圧縮方式を提案する。
52.9%のFLOPを削減し、ResNet-50で48.4%のパラメータを削除しました。
論文 参考訳(メタデータ) (2021-05-24T12:07:38Z) - ScaleCom: Scalable Sparsified Gradient Compression for
Communication-Efficient Distributed Training [74.43625662170284]
最先端プラットフォーム上でのDeep Neural Networks(DNN)の大規模分散トレーニングは,通信の厳しい制約が期待できる。
本稿では,学習者間の勾配分布の類似性を活用した新しい圧縮手法を提案する。
実験により,scalecomのオーバーヘッドは小さく,勾配トラフィックを直接低減し,高い圧縮率(65~400倍)と優れたスケーラビリティ(64名までの学習者,8~12倍のバッチサイズ)を提供する。
論文 参考訳(メタデータ) (2021-04-21T02:22:10Z) - Accordion: Adaptive Gradient Communication via Critical Learning Regime
Identification [12.517161466778655]
分散モデルトレーニングは、計算ノードにまたがる頻繁なモデル更新による通信ボトルネックに悩まされる。
これらのボトルネックを軽減するために、実践者はスパーシフィケーションや量子化、低ランク更新といった勾配圧縮技術を使用する。
本研究では,高圧縮比の選択による性能劣化が基本的でないことを示す。
適応圧縮戦略は、最終テスト精度を維持しながら通信を低減することができる。
論文 参考訳(メタデータ) (2020-10-29T16:41:44Z) - Training with Quantization Noise for Extreme Model Compression [57.51832088938618]
与えられたモデルサイズに対する精度を最大化しながら、コンパクトなモデルを作成するという問題に取り組む。
標準的な解決策は、トレーニング中に重みが定量化され、勾配がストレート・スルー推定器に近似される量子化意識訓練(Quantization Aware Training)でネットワークをトレーニングすることである。
本稿では, この手法を, 極端な圧縮法を用いて, int8 の固定点量子化を超えて機能するように拡張する。
論文 参考訳(メタデータ) (2020-04-15T20:10:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。