論文の概要: SegKAN: High-Resolution Medical Image Segmentation with Long-Distance Dependencies
- arxiv url: http://arxiv.org/abs/2412.19990v1
- Date: Sat, 28 Dec 2024 03:27:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-31 16:04:48.687884
- Title: SegKAN: High-Resolution Medical Image Segmentation with Long-Distance Dependencies
- Title(参考訳): SegKan: 長距離依存による高分解能医用画像分割
- Authors: Shengbo Tan, Rundong Xue, Shipeng Luo, Zeyu Zhang, Xinran Wang, Lei Zhang, Daji Ergu, Zhang Yi, Yang Zhao, Ying Cai,
- Abstract要約: 本稿では,SegKanという革新的なモデルを提案する。
我々は,画像埋め込みのための新しい畳み込みネットワーク構造を採用することにより,従来の埋め込みモジュールを改善した。
我々は,従来の視覚変換器モデルにおいて,パッチブロック間の空間的関係を時間的関係に変換することで,パッチブロック間の関係を捕捉する。
- 参考スコア(独自算出の注目度): 18.448618291087183
- License:
- Abstract: Hepatic vessels in computed tomography scans often suffer from image fragmentation and noise interference, making it difficult to maintain vessel integrity and posing significant challenges for vessel segmentation. To address this issue, we propose an innovative model: SegKAN. First, we improve the conventional embedding module by adopting a novel convolutional network structure for image embedding, which smooths out image noise and prevents issues such as gradient explosion in subsequent stages. Next, we transform the spatial relationships between Patch blocks into temporal relationships to solve the problem of capturing positional relationships between Patch blocks in traditional Vision Transformer models. We conducted experiments on a Hepatic vessel dataset, and compared to the existing state-of-the-art model, the Dice score improved by 1.78%. These results demonstrate that the proposed new structure effectively enhances the segmentation performance of high-resolution extended objects. Code will be available at https://github.com/goblin327/SegKAN
- Abstract(参考訳): CTの肝血管は画像の断片化やノイズ干渉に悩まされることが多く、血管の整合性を維持することは困難であり、血管のセグメンテーションには重大な課題がある。
この問題に対処するため,我々はSegKANという革新的なモデルを提案する。
まず,画像埋め込みに新たな畳み込みネットワーク構造を導入し,画像ノイズをスムーズにし,その後の段階における勾配爆発などの問題を防止することにより,従来の埋め込みモジュールの改善を図る。
次に、従来の視覚変換器モデルにおいて、パッチブロック間の空間的関係を時間的関係に変換し、パッチブロック間の位置的関係を捉える。
我々は,肝血管データセットの実験を行い,既存の最先端モデルと比較してDiceスコアが1.78%向上した。
これらの結果から,提案手法は高分解能拡張物体のセグメンテーション性能を効果的に向上させることを示した。
コードはhttps://github.com/goblin327/SegKANで入手できる。
関連論文リスト
- Serp-Mamba: Advancing High-Resolution Retinal Vessel Segmentation with Selective State-Space Model [45.682311387979944]
本稿では,この課題に対処する最初のSerpentine Mamba(Serp-Mamba)ネットワークを提案する。
我々はまず,UWF-SLO画像をヘビのように曲がった血管構造に沿って走査するSerpentine Interwoven Adaptive (SIA)スキャン機構を考案した。
次に,高分解能画像によって強調されるカテゴリ不均衡問題に対処するアンビグニティ駆動型デュアルリカレーションモジュールを提案する。
論文 参考訳(メタデータ) (2024-09-06T15:40:47Z) - TBConvL-Net: A Hybrid Deep Learning Architecture for Robust Medical Image Segmentation [6.013821375459473]
医用画像セグメンテーションのための新しいディープラーニングアーキテクチャを提案する。
提案モデルでは,10の公開データセット上でのテクニックの現状に対して,一貫した改善が示されている。
論文 参考訳(メタデータ) (2024-09-05T09:14:03Z) - Dual-scale Enhanced and Cross-generative Consistency Learning for Semi-supervised Medical Image Segmentation [49.57907601086494]
医用画像のセグメンテーションはコンピュータ支援診断において重要な役割を担っている。
半教師型医用画像(DEC-Seg)のための新しいDual-scale Enhanced and Cross-generative consistency learning frameworkを提案する。
論文 参考訳(メタデータ) (2023-12-26T12:56:31Z) - DiAD: A Diffusion-based Framework for Multi-class Anomaly Detection [55.48770333927732]
本稿では,拡散型異常検出(Difusion-based Anomaly Detection, DAD)フレームワークを提案する。
画素空間オートエンコーダ、安定拡散の復調ネットワークに接続する潜在空間セマンティックガイド(SG)ネットワーク、特徴空間事前学習機能抽出器から構成される。
MVTec-ADとVisAデータセットの実験は、我々のアプローチの有効性を実証している。
論文 参考訳(メタデータ) (2023-12-11T18:38:28Z) - Distance Weighted Trans Network for Image Completion [52.318730994423106]
本稿では,DWT(Distance-based Weighted Transformer)を利用した画像コンポーネント間の関係をよりよく理解するためのアーキテクチャを提案する。
CNNは、粗い事前の局所的なテクスチャ情報を強化するために使用される。
DWTブロックは、特定の粗いテクスチャやコヒーレントな視覚構造を復元するために使用される。
論文 参考訳(メタデータ) (2023-10-11T12:46:11Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
本稿では,信頼性の高いマルチスケールウェーブレットエンハンストランスネットワークを提案する。
本研究では,ウェーブレット型特徴抽出器ネットワークとマルチスケール変圧器モジュールを統合したセグメンテーションバックボーンを開発した。
提案手法は,他の最先端セグメンテーション手法と比較して信頼性の高いセグメンテーション精度を実現する。
論文 参考訳(メタデータ) (2022-12-01T07:32:56Z) - Accurate Image Restoration with Attention Retractable Transformer [50.05204240159985]
画像復元のためのアテンション・リトラクタブル・トランス (ART) を提案する。
ARTはネットワーク内の密集モジュールと疎開モジュールの両方を提示する。
画像超解像、デノナイジング、JPEG圧縮アーティファクト削減タスクについて広範な実験を行った。
論文 参考訳(メタデータ) (2022-10-04T07:35:01Z) - Segmentation-Renormalized Deep Feature Modulation for Unpaired Image
Harmonization [0.43012765978447565]
サイクル一貫性のある生成共役ネットワークは、ソースとターゲットドメイン間のイメージセットの調和に使われてきた。
これらの手法は、不安定性、コントラストの逆転、病理の難治性操作、および実際の医用画像における信頼性を制限したステガノグラフィーマッピングの傾向が強い。
解剖学的レイアウトを維持しながらスキャナ間の調和を低減するセグメンテーション正規化画像翻訳フレームワークを提案する。
論文 参考訳(メタデータ) (2021-02-11T23:53:51Z) - Image Fine-grained Inpainting [89.17316318927621]
拡張畳み込みの密結合を利用してより大きく効果的な受容場を得る一段階モデルを提案する。
この効率的なジェネレータをよく訓練するために、頻繁に使用されるVGG特徴整合損失を除いて、新しい自己誘導回帰損失を設計する。
また、局所的・グローバルな分枝を持つ識別器を用いて、局所的・グローバルな内容の整合性を確保する。
論文 参考訳(メタデータ) (2020-02-07T03:45:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。