Quantum phase estimation and realistic detection schemes in Mach-Zehnder interferometer using SU(2) coherent states
- URL: http://arxiv.org/abs/2412.20152v1
- Date: Sat, 28 Dec 2024 13:37:15 GMT
- Title: Quantum phase estimation and realistic detection schemes in Mach-Zehnder interferometer using SU(2) coherent states
- Authors: Mohammed Abdellaoui, Nour-Eddine Abouelkhir, Abdallah Slaoui, Rachid Ahl Laamara,
- Abstract summary: In quantum parameter estimation, the quantum Cram'er-Rao bound (QCRB) sets a fundamental limit on the precision achievable with unbiased estimators.
We show that all three detection schemes can achieve the QCRB for the spin-coherent input state.
We find that the best pressure is obtained when the total angular momentum quantum number $j$ is high.
- Score: 0.0
- License:
- Abstract: In quantum parameter estimation, the quantum Cram\'er-Rao bound (QCRB) sets a fundamental limit on the precision achievable with unbiased estimators. It relates the uncertainty in estimating a parameter to the inverse of the quantum Fisher information (QFI). Both QCRB and QFI are valuable tools for analyzing interferometric phase sensitivity. This paper compares the single-parameter and two-parameter QFI for a Mach-Zehnder interferometer (MZI) with three detection schemes: single-mode and difference intensity detection, neither has access to an external phase reference and balanced homodyne detection with access to an external phase reference. We use a spin-coherent state associated with the su(2) algebra as the input state in all scenarios and show that all three schemes can achieve the QCRB for the spin-coherent input state. Furthermore, we explore the utilization of SU(2) coherent states in diverse scenarios. Significantly, we find that the best pressure is obtained when the total angular momentum quantum number $j$ is high, and we demonstrate that given optimal conditions, all detection schemes can achieve the QCRB by utilizing SU(2) coherent states as input states.
Related papers
- Dynamic Evolution of Quantum Fisher and Skew Information under Decoherence in Three-Qubit X-States [0.0]
We show that phase damping and phase-flip channels generally allow for better parameter estimation compared to depolarization.
This study provides insights into the optimal selection of noise channels for enhancing precision in quantum metrological tasks involving multi-qubit entangled states.
arXiv Detail & Related papers (2024-12-02T13:19:06Z) - Extending Quantum Perceptrons: Rydberg Devices, Multi-Class Classification, and Error Tolerance [67.77677387243135]
Quantum Neuromorphic Computing (QNC) merges quantum computation with neural computation to create scalable, noise-resilient algorithms for quantum machine learning (QML)
At the core of QNC is the quantum perceptron (QP), which leverages the analog dynamics of interacting qubits to enable universal quantum computation.
arXiv Detail & Related papers (2024-11-13T23:56:20Z) - Enhancing phase sensitivity in Mach-Zehnder interferometer with various detection schemes using SU(1,1) coherent states [0.0]
The Mach-Zehnder interferometer (MZI) is a versatile tool for analyzing this phenomenon.
This paper analyzes the phase sensitivity of a MZI in various scenarios using different detection schemes and input states.
arXiv Detail & Related papers (2024-06-12T08:54:17Z) - Characterizing randomness in parameterized quantum circuits through expressibility and average entanglement [39.58317527488534]
Quantum Circuits (PQCs) are still not fully understood outside the scope of their principal application.
We analyse the generation of random states in PQCs under restrictions on the qubits connectivities.
We place a connection between how steep is the increase on the uniformity of the distribution of the generated states and the generation of entanglement.
arXiv Detail & Related papers (2024-05-03T17:32:55Z) - Mitigating Errors on Superconducting Quantum Processors through Fuzzy
Clustering [38.02852247910155]
A new Quantum Error Mitigation (QEM) technique uses Fuzzy C-Means clustering to specifically identify measurement error patterns.
We report a proof-of-principle validation of the technique on a 2-qubit register, obtained as a subset of a real NISQ 5-qubit superconducting quantum processor.
We demonstrate that the FCM-based QEM technique allows for reasonable improvement of the expectation values of single- and two-qubit gates based quantum circuits.
arXiv Detail & Related papers (2024-02-02T14:02:45Z) - Multiparameter critical quantum metrology with impurity probes [0.0]
We introduce the two-impurity Kondo (2IK) model as a novel paradigm for critical quantum metrology.
We demonstrate that by applying a known control field, the singularity can be removed and measurement sensitivity restored.
arXiv Detail & Related papers (2023-11-28T16:32:51Z) - Control landscape of measurement-assisted transition probability for a
three-level quantum system with dynamical symmetry [77.34726150561087]
Quantum systems with dynamical symmetries have conserved quantities which are preserved under coherent controls.
Incoherent control can increase the maximal attainable transition probability.
We show that all critical points are global maxima, global minima, saddle points and second order traps.
arXiv Detail & Related papers (2023-07-14T16:12:21Z) - Enhancing the estimation precision of an unknown phase shift in
multipartite Glauber coherent states via skew information correlations and
local quantum Fisher information [0.0]
Local quantum uncertainty (LQU) and local quantum Fisher information (LQFI) are two tools used to capture purely quantum correlations in multi-partite quantum systems.
We study these quantifiers in the case of multipartite Glauber coherent state which include the GHZ (Greenberger-Horne-Zeilinger) and Werner states.
arXiv Detail & Related papers (2021-10-18T15:55:19Z) - Quantum probes for the characterization of nonlinear media [50.591267188664666]
We investigate how squeezed probes may improve individual and joint estimation of the nonlinear coupling $tildelambda$ and of the nonlinearity order $zeta$.
We conclude that quantum probes represent a resource to enhance precision in the characterization of nonlinear media, and foresee potential applications with current technology.
arXiv Detail & Related papers (2021-09-16T15:40:36Z) - Quantum-limited Localisation and Resolution in Three Dimensions [10.824994978916815]
We determine the ultimate potential of quantum-limited imaging for improving the resolution of a far-field, diffraction-limited approximation.
Our results give the upper bounds on certain far-field imaging technology and will find wide applications from microscopy to astrometry.
arXiv Detail & Related papers (2020-12-09T14:44:56Z) - In and out of equilibrium quantum metrology with mean-field quantum
criticality [68.8204255655161]
We study the influence that collective transition phenomena have on quantum metrological protocols.
The single spherical quantum spin (SQS) serves as stereotypical toy model that allows analytical insights on a mean-field level.
arXiv Detail & Related papers (2020-01-09T19:20:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.