Phase transitions, symmetries, and tunneling in Kerr parametric oscillators
- URL: http://arxiv.org/abs/2504.15347v1
- Date: Mon, 21 Apr 2025 18:00:19 GMT
- Title: Phase transitions, symmetries, and tunneling in Kerr parametric oscillators
- Authors: Miguel A. Prado Reynoso, Edson M. Signor, Jamil Khalouf-Rivera, Alexandre D. Ribeiro, Francisco Pérez-Bernal, Lea F. Santos,
- Abstract summary: We study the onset of ground-state and excited-state quantum phase transitions in KPOs.<n>We identify the critical points associated with quantum phase transitions and analyze their influence on the energy spectrum and tunneling dynamics.<n>Our findings provide insights into the engineering of robust quantum states, quantum dynamics control, and onset of quantum phase transitions with implications for critical quantum sensing.
- Score: 37.69303106863453
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum Kerr parametric oscillators (KPOs) are systems out of equilibrium with a wide range of applications in quantum computing, quantum sensing, and fundamental research. They have been realized in superconducting circuits and photonic platforms. In this work, we explore the onset of ground-state and excited-state quantum phase transitions in KPOs, focusing on the role of the phase-space rotational symmetry when the driving frequency is $\mu$ times the oscillator's natural frequency, specifically for $\mu=1,2,3,4$. These cases are experimentally accessible in superconducting circuits, where the Floquet quasienergy spectrum can also be studied as a function of tunable control parameters. Using the classical Hamiltonian of the system, we identify the critical points associated with quantum phase transitions and analyze the emergence of both real and avoided level crossings, examining their influence on the energy spectrum and tunneling dynamics. Our findings provide insights into the engineering of robust quantum states, quantum dynamics control, and onset of quantum phase transitions with implications for critical quantum sensing.
Related papers
- Acoustic phonon phase gates with number-resolving phonon detection [36.29277627484587]
Itinerant phonons in quantum acoustics, combined with superconducting qubits, offer a compelling alternative to the quantum optics approach.<n>We implement phonon phase control using the frequency-dependent scattering of phonon states from a superconducting transmon qubit.<n>The acoustic interferometer used to measure the resulting phonon phase achieves a noise-floor-limited Hong-Ou-Mandel interference visibility of 98.1%.
arXiv Detail & Related papers (2025-03-05T20:56:35Z) - Quantum metrological capability as a probe for quantum phase transition [1.5574423250822542]
The metrological capability quantified by the quantum Fisher information captivatingly shows an unique peak in the vicinity of the quantum critical point.
We show that the probing can be implemented by extracting quantum fluctuations of the interferometric generator.
arXiv Detail & Related papers (2024-08-19T08:18:03Z) - Quantum sensing in Kerr parametric oscillators [0.0]
We show how the analysis of the phase space structure of the classical limit of Kerr parametric oscillators can be used for determining control parameters.
We also explore how quantum sensing can benefit from excited-state quantum phase transitions, even in the absence of a conventional quantum phase transition.
arXiv Detail & Related papers (2024-07-19T18:00:00Z) - Thermalization and Criticality on an Analog-Digital Quantum Simulator [133.58336306417294]
We present a quantum simulator comprising 69 superconducting qubits which supports both universal quantum gates and high-fidelity analog evolution.
We observe signatures of the classical Kosterlitz-Thouless phase transition, as well as strong deviations from Kibble-Zurek scaling predictions.
We digitally prepare the system in pairwise-entangled dimer states and image the transport of energy and vorticity during thermalization.
arXiv Detail & Related papers (2024-05-27T17:40:39Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Observation and manipulation of quantum interference in a
superconducting Kerr parametric oscillator [4.569118826402647]
We report a direct observation of quantum interference induced by quantum tunneling in a superconducting circuit through Wigner tomography.
We experimentally elucidate all essential properties of this quantum interference, such as mapping from Fock states to cat states, a temporal oscillation due to the pump detuning, as well as its characteristic Rabi oscillations and Ramsey fringes.
arXiv Detail & Related papers (2023-06-21T14:27:42Z) - Spectral kissing and its dynamical consequences in the squeeze-driven
Kerr oscillator [0.0]
Transmon qubits are the predominant element in circuit-based quantum information processing.
We show that the spectral kissing (coalescence of pairs of energy levels) experimentally observed in the effective Hamiltonian of a driven SNAIL-transmon is an ESQPT precursor.
arXiv Detail & Related papers (2022-10-13T18:00:03Z) - Critical parametric quantum sensing [0.0]
We assess the metrological power of parametric Kerr resonators undergoing driven-dissipative transitions.
We show that the Heisenberg precision can be achieved with experimentally reachable parameters.
arXiv Detail & Related papers (2021-07-09T15:44:26Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Quantum Non-equilibrium Many-Body Spin-Photon Systems [91.3755431537592]
dissertation concerns the quantum dynamics of strongly-correlated quantum systems in out-of-equilibrium states.
Our main results can be summarized in three parts: Signature of Critical Dynamics, Driven Dicke Model as a Test-bed of Ultra-Strong Coupling, and Beyond the Kibble-Zurek Mechanism.
arXiv Detail & Related papers (2020-07-23T19:05:56Z) - Circuit Quantum Electrodynamics [62.997667081978825]
Quantum mechanical effects at the macroscopic level were first explored in Josephson junction-based superconducting circuits in the 1980s.
In the last twenty years, the emergence of quantum information science has intensified research toward using these circuits as qubits in quantum information processors.
The field of circuit quantum electrodynamics (QED) has now become an independent and thriving field of research in its own right.
arXiv Detail & Related papers (2020-05-26T12:47:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.