論文の概要: Hypergraph-Based Dynamic Graph Node Classification
- arxiv url: http://arxiv.org/abs/2412.20321v1
- Date: Sun, 29 Dec 2024 02:19:44 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-31 16:04:52.745963
- Title: Hypergraph-Based Dynamic Graph Node Classification
- Title(参考訳): ハイパーグラフに基づく動的グラフノード分類
- Authors: Xiaoxu Ma, Chen Zhao, Minglai Shao, Yujie Lin,
- Abstract要約: ハイパーグラフに基づく動的グラフノード分類(HYDG)という新しいモデルを提案する。
個々のレベルのハイパーグラフは、個々のノード間の時間ノード表現をキャプチャする。
グループレベルのハイパーグラフは、同一クラスのノード間の多重粒度グループ時間表現をキャプチャする。
- 参考スコア(独自算出の注目度): 6.450690200168852
- License:
- Abstract: Node classification on static graphs has achieved significant success, but achieving accurate node classification on dynamic graphs where node topology, attributes, and labels change over time has not been well addressed. Existing methods based on RNNs and self-attention only aggregate features of the same node across different time slices, which cannot adequately address and capture the diverse dynamic changes in dynamic graphs. Therefore, we propose a novel model named Hypergraph-Based Multi-granularity Dynamic Graph Node Classification (HYDG). After obtaining basic node representations for each slice through a GNN backbone, HYDG models the representations of each node in the dynamic graph through two modules. The individual-level hypergraph captures the spatio-temporal node representations between individual nodes, while the group-level hypergraph captures the multi-granularity group temporal representations among nodes of the same class. Each hyperedge captures different temporal dependencies of varying lengths by connecting multiple nodes within specific time ranges. More accurate representations are obtained through weighted information propagation and aggregation by the hypergraph neural network. Extensive experiments on five real dynamic graph datasets using two GNN backbones demonstrate the superiority of our proposed framework.
- Abstract(参考訳): 静的グラフ上のノード分類は大きな成功を収めているが、ノードトポロジ、属性、ラベルが時間とともに変化する動的なグラフ上で正確なノード分類を実現することは、うまく対処されていない。
RNNと自己注意に基づく既存の手法は、異なる時間スライスにまたがる同じノードの特徴のみを集約する。
そこで我々はHypergraph-based Multi-granularity Dynamic Graph Node Classification (HYDG)という新しいモデルを提案する。
GNNバックボーンを通じて各スライスの基本ノード表現を得た後、HYDGは2つのモジュールを通して動的グラフ内の各ノードの表現をモデル化する。
個々のレベルハイパーグラフは個々のノード間の時空間表現をキャプチャし、グループレベルのハイパーグラフは同一クラスのノード間の時空間表現をキャプチャする。
各ハイパーエッジは、特定の時間範囲内で複数のノードを接続することで、異なる長さの異なる時間的依存関係をキャプチャする。
ハイパーグラフニューラルネットワークによる重み付け情報伝播と集約により、より正確な表現が得られる。
2つのGNNバックボーンを用いた5つの実動的グラフデータセットの大規模な実験により、提案フレームワークの優位性を実証した。
関連論文リスト
- DA-MoE: Addressing Depth-Sensitivity in Graph-Level Analysis through Mixture of Experts [70.21017141742763]
グラフニューラルネットワーク(GNN)は、グラフ構造化データを処理することで人気を集めている。
既存のメソッドは通常、固定数のGNNレイヤを使用して、すべてのグラフの表現を生成する。
本稿では,GNNに2つの改良を加えたDA-MoE法を提案する。
論文 参考訳(メタデータ) (2024-11-05T11:46:27Z) - Seq-HGNN: Learning Sequential Node Representation on Heterogeneous Graph [57.2953563124339]
本稿では,シーケンシャルノード表現,すなわちSeq-HGNNを用いた新しい異種グラフニューラルネットワークを提案する。
Heterogeneous Graph Benchmark (HGB) と Open Graph Benchmark (OGB) の4つの広く使われているデータセットについて広範な実験を行った。
論文 参考訳(メタデータ) (2023-05-18T07:27:18Z) - Temporal Aggregation and Propagation Graph Neural Networks for Dynamic
Representation [67.26422477327179]
時間グラフは連続時間を通してノード間の動的相互作用を示す。
本研究では,周辺地域全体と時間的グラフ畳み込みの新たな手法を提案する。
提案するTAP-GNNは,予測性能とオンライン推論遅延の両面で,既存の時間グラフ手法よりも優れた性能を示す。
論文 参考訳(メタデータ) (2023-04-15T08:17:18Z) - Multi-Granularity Graph Pooling for Video-based Person Re-Identification [14.943835935921296]
ビデオサンプルの時間的特徴と空間的特徴を集約するためにグラフニューラルネットワーク(GNN)が導入された。
STGCNのような既存のグラフベースのモデルは、グラフ表現を得るためにノード機能でtextitmean/textitmaxプールを実行する。
ビデオ検索のための多粒度グラフ表現を学習するためのグラフプーリングネットワーク(GPNet)を提案する。
論文 参考訳(メタデータ) (2022-09-23T13:26:05Z) - Time-aware Dynamic Graph Embedding for Asynchronous Structural Evolution [60.695162101159134]
既存の作業は、動的グラフを変更のシーケンスとして見るだけである。
動的グラフを接合時間に付随する時間的エッジシーケンスとして定式化する。
頂点とエッジのタイムパン
組み込みにはタイムアウェアなTransformerが提案されている。
vertexの動的接続と学習へのToEs。
頂点表現
論文 参考訳(メタデータ) (2022-07-01T15:32:56Z) - Semi-Supervised Hierarchical Graph Classification [54.25165160435073]
ノードがグラフのインスタンスである階層グラフにおけるノード分類問題について検討する。
本稿では階層グラフ相互情報(HGMI)を提案し,理論的保証をもってHGMIを計算する方法を提案する。
本稿では,この階層グラフモデリングとSEAL-CI法がテキストおよびソーシャルネットワークデータに与える影響を実証する。
論文 参考訳(メタデータ) (2022-06-11T04:05:29Z) - Graph Neural Networks with Feature and Structure Aware Random Walk [7.143879014059894]
典型的な好適なグラフでは、エッジを指向する可能性があり、エッジをそのまま扱うか、あるいは単純に非指向にするかは、GNNモデルの性能に大きな影響を与える。
そこで我々は,グラフの方向性を適応的に学習するモデルを開発し,ノード間の長距離相関を生かした。
論文 参考訳(メタデータ) (2021-11-19T08:54:21Z) - IV-GNN : Interval Valued Data Handling Using Graph Neural Network [12.651341660194534]
Graph Neural Network(GNN)は、グラフ上で標準的な機械学習を実行する強力なツールである。
本稿では,新しいGNNモデルであるInterval-ValuedGraph Neural Networkを提案する。
我々のモデルは、任意の可算集合は常に可算集合 $Rn$ の部分集合であるので、既存のモデルよりもはるかに一般である。
論文 参考訳(メタデータ) (2021-11-17T15:37:09Z) - Accurate Learning of Graph Representations with Graph Multiset Pooling [45.72542969364438]
本稿では,その構造的依存関係に応じてノード間の相互作用をキャプチャするグラフマルチセットトランス (GMT) を提案する。
実験の結果,GMTはグラフ分類ベンチマークにおいて,最先端のグラフプーリング法を著しく上回っていることがわかった。
論文 参考訳(メタデータ) (2021-02-23T07:45:58Z) - Structural Temporal Graph Neural Networks for Anomaly Detection in
Dynamic Graphs [54.13919050090926]
本稿では,動的グラフの異常エッジを検出するために,エンドツーエンドの時間構造グラフニューラルネットワークモデルを提案する。
特に,まずターゲットエッジを中心にした$h$ホップ囲むサブグラフを抽出し,各ノードの役割を識別するノードラベル機能を提案する。
抽出した特徴に基づき,GRU(Gated Recurrent Unit)を用いて,異常検出のための時間的情報を取得する。
論文 参考訳(メタデータ) (2020-05-15T09:17:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。