Hypergraph-Based Dynamic Graph Node Classification
- URL: http://arxiv.org/abs/2412.20321v1
- Date: Sun, 29 Dec 2024 02:19:44 GMT
- Title: Hypergraph-Based Dynamic Graph Node Classification
- Authors: Xiaoxu Ma, Chen Zhao, Minglai Shao, Yujie Lin,
- Abstract summary: We propose a novel model named Hypergraph-Based Multi-granularity Dynamic Graph Node Classification (HYDG)
The individual-level hypergraph captures the temporal node representations between individual nodes.
The group-level hypergraph captures the multi-granularity group temporal representations among nodes of the same class.
- Score: 6.450690200168852
- License:
- Abstract: Node classification on static graphs has achieved significant success, but achieving accurate node classification on dynamic graphs where node topology, attributes, and labels change over time has not been well addressed. Existing methods based on RNNs and self-attention only aggregate features of the same node across different time slices, which cannot adequately address and capture the diverse dynamic changes in dynamic graphs. Therefore, we propose a novel model named Hypergraph-Based Multi-granularity Dynamic Graph Node Classification (HYDG). After obtaining basic node representations for each slice through a GNN backbone, HYDG models the representations of each node in the dynamic graph through two modules. The individual-level hypergraph captures the spatio-temporal node representations between individual nodes, while the group-level hypergraph captures the multi-granularity group temporal representations among nodes of the same class. Each hyperedge captures different temporal dependencies of varying lengths by connecting multiple nodes within specific time ranges. More accurate representations are obtained through weighted information propagation and aggregation by the hypergraph neural network. Extensive experiments on five real dynamic graph datasets using two GNN backbones demonstrate the superiority of our proposed framework.
Related papers
- DA-MoE: Addressing Depth-Sensitivity in Graph-Level Analysis through Mixture of Experts [70.21017141742763]
Graph neural networks (GNNs) are gaining popularity for processing graph-structured data.
Existing methods generally use a fixed number of GNN layers to generate representations for all graphs.
We propose the depth adaptive mixture of expert (DA-MoE) method, which incorporates two main improvements to GNN.
arXiv Detail & Related papers (2024-11-05T11:46:27Z) - Seq-HGNN: Learning Sequential Node Representation on Heterogeneous Graph [57.2953563124339]
We propose a novel heterogeneous graph neural network with sequential node representation, namely Seq-HGNN.
We conduct extensive experiments on four widely used datasets from Heterogeneous Graph Benchmark (HGB) and Open Graph Benchmark (OGB)
arXiv Detail & Related papers (2023-05-18T07:27:18Z) - Temporal Aggregation and Propagation Graph Neural Networks for Dynamic
Representation [67.26422477327179]
Temporal graphs exhibit dynamic interactions between nodes over continuous time.
We propose a novel method of temporal graph convolution with the whole neighborhood.
Our proposed TAP-GNN outperforms existing temporal graph methods by a large margin in terms of both predictive performance and online inference latency.
arXiv Detail & Related papers (2023-04-15T08:17:18Z) - Multi-Granularity Graph Pooling for Video-based Person Re-Identification [14.943835935921296]
graph neural networks (GNNs) are introduced to aggregate temporal and spatial features of video samples.
Existing graph-based models, like STGCN, perform the textitmean/textitmax pooling on node features to obtain the graph representation.
We propose the graph pooling network (GPNet) to learn the multi-granularity graph representation for the video retrieval.
arXiv Detail & Related papers (2022-09-23T13:26:05Z) - Time-aware Dynamic Graph Embedding for Asynchronous Structural Evolution [60.695162101159134]
Existing works merely view a dynamic graph as a sequence of changes.
We formulate dynamic graphs as temporal edge sequences associated with joining time of.
vertex and timespan of edges.
A time-aware Transformer is proposed to embed.
vertex' dynamic connections and ToEs into the learned.
vertex representations.
arXiv Detail & Related papers (2022-07-01T15:32:56Z) - Semi-Supervised Hierarchical Graph Classification [54.25165160435073]
We study the node classification problem in the hierarchical graph where a 'node' is a graph instance.
We propose the Hierarchical Graph Mutual Information (HGMI) and present a way to compute HGMI with theoretical guarantee.
We demonstrate the effectiveness of this hierarchical graph modeling and the proposed SEAL-CI method on text and social network data.
arXiv Detail & Related papers (2022-06-11T04:05:29Z) - Graph Neural Networks with Feature and Structure Aware Random Walk [7.143879014059894]
We show that in typical heterphilous graphs, the edges may be directed, and whether to treat the edges as is or simply make them undirected greatly affects the performance of the GNN models.
We develop a model that adaptively learns the directionality of the graph, and exploits the underlying long-distance correlations between nodes.
arXiv Detail & Related papers (2021-11-19T08:54:21Z) - IV-GNN : Interval Valued Data Handling Using Graph Neural Network [12.651341660194534]
Graph Neural Network (GNN) is a powerful tool to perform standard machine learning on graphs.
This article proposes an Interval-ValuedGraph Neural Network, a novel GNN model where, for the first time, we relax the restriction of the feature space being countable.
Our model is much more general than existing models as any countable set is always a subset of the universal set $Rn$, which is uncountable.
arXiv Detail & Related papers (2021-11-17T15:37:09Z) - Accurate Learning of Graph Representations with Graph Multiset Pooling [45.72542969364438]
We propose a Graph Multiset Transformer (GMT) that captures the interaction between nodes according to their structural dependencies.
Our experimental results show that GMT significantly outperforms state-of-the-art graph pooling methods on graph classification benchmarks.
arXiv Detail & Related papers (2021-02-23T07:45:58Z) - Structural Temporal Graph Neural Networks for Anomaly Detection in
Dynamic Graphs [54.13919050090926]
We propose an end-to-end structural temporal Graph Neural Network model for detecting anomalous edges in dynamic graphs.
In particular, we first extract the $h$-hop enclosing subgraph centered on the target edge and propose the node labeling function to identify the role of each node in the subgraph.
Based on the extracted features, we utilize Gated recurrent units (GRUs) to capture the temporal information for anomaly detection.
arXiv Detail & Related papers (2020-05-15T09:17:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.