論文の概要: Asynchronous Federated Clustering with Unknown Number of Clusters
- arxiv url: http://arxiv.org/abs/2412.20341v1
- Date: Sun, 29 Dec 2024 03:56:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-31 16:05:29.244853
- Title: Asynchronous Federated Clustering with Unknown Number of Clusters
- Title(参考訳): 未知数のクラスタによる非同期フェデレーションクラスタリング
- Authors: Yunfan Zhang, Yiqun Zhang, Yang Lu, Mengke Li, Xi Chen, Yiu-ming Cheung,
- Abstract要約: フェデレートクラスタリング(FC)は、ラベルのない非独立なIdentically Distributed(非IID)データから知識をマイニングするために重要である。
本稿では,非同期クラスタ学習(AFCL)手法を提案する。
過剰な数のシードポイントを学習媒体としてクライアントに分散し、それらをクライアント全体にコーディネートしてコンセンサスを形成する。
- 参考スコア(独自算出の注目度): 35.35189341303029
- License:
- Abstract: Federated Clustering (FC) is crucial to mining knowledge from unlabeled non-Independent Identically Distributed (non-IID) data provided by multiple clients while preserving their privacy. Most existing attempts learn cluster distributions at local clients, and then securely pass the desensitized information to the server for aggregation. However, some tricky but common FC problems are still relatively unexplored, including the heterogeneity in terms of clients' communication capacity and the unknown number of proper clusters $k^*$. To further bridge the gap between FC and real application scenarios, this paper first shows that the clients' communication asynchrony and unknown $k^*$ are complex coupling problems, and then proposes an Asynchronous Federated Cluster Learning (AFCL) method accordingly. It spreads the excessive number of seed points to the clients as a learning medium and coordinates them across the clients to form a consensus. To alleviate the distribution imbalance cumulated due to the unforeseen asynchronous uploading from the heterogeneous clients, we also design a balancing mechanism for seeds updating. As a result, the seeds gradually adapt to each other to reveal a proper number of clusters. Extensive experiments demonstrate the efficacy of AFCL.
- Abstract(参考訳): フェデレートクラスタリング(FC)は、プライバシを保護しながら、複数のクライアントによって提供される、ラベルのない非独立なIdentically Distributed(非IID)データから知識をマイニングするために重要である。
既存のほとんどの試みは、ローカルクライアントでクラスタの配布を学習し、デセンシタイズされた情報をサーバに安全に渡して集約する。
しかしながら、クライアントの通信能力の不均一性や、未知の適切なクラスタ数$k^*$など、いくつかのトリッキーだが一般的なFC問題はまだ比較的未解決である。
FCと実際のアプリケーションシナリオのギャップをさらに埋めるために、まず、クライアントの通信の非同期性と未知の$k^*$が複雑な結合問題であることを示し、それに応じて非同期・フェデレーション・クラスタ・ラーニング(AFCL)手法を提案する。
過剰な数のシードポイントを学習媒体としてクライアントに分散し、それらをクライアント全体にコーディネートしてコンセンサスを形成する。
異種クライアントからの予期せぬ非同期アップロードによる分布不均衡を軽減するため,シード更新のためのバランス機構を設計する。
その結果、種子は徐々に互いに適応し、適切な数のクラスターを明らかにする。
大規模な実験はAFCLの有効性を示す。
関連論文リスト
- A Bayesian Framework for Clustered Federated Learning [14.426129993432193]
連邦学習(FL)の主な課題の1つは、非独立で同一に分散された(非IID)クライアントデータを扱うことである。
本稿では、クライアントをクラスタに関連付けるクラスタ化FLのための統一ベイズフレームワークを提案する。
この作業は、クライアントとクラスタの関連に関する洞察を提供し、新しい方法でクライアントの知識共有を可能にする。
論文 参考訳(メタデータ) (2024-10-20T19:11:24Z) - Federated Deep Multi-View Clustering with Global Self-Supervision [51.639891178519136]
フェデレートされたマルチビュークラスタリングは、複数のデバイスに分散したデータからグローバルクラスタリングモデルを学習する可能性がある。
この設定では、ラベル情報は未知であり、データのプライバシを保持する必要がある。
本稿では,複数のクライアントから補完的なクラスタ構造をマイニングできる,新しい多視点クラスタリング手法を提案する。
論文 参考訳(メタデータ) (2023-09-24T17:07:01Z) - Timely Asynchronous Hierarchical Federated Learning: Age of Convergence [59.96266198512243]
クライアント-エッジ-クラウドフレームワークを用いた非同期階層型フェデレーション学習環境について検討する。
クライアントはトレーニングされたパラメータをエッジサーバと交換し、ローカルに集約されたモデルを更新する。
各クライアントの目標は、クライアントのタイムラインを維持しながら、グローバルモデルに収束することだ。
論文 参考訳(メタデータ) (2023-06-21T17:39:16Z) - Hard Regularization to Prevent Deep Online Clustering Collapse without
Data Augmentation [65.268245109828]
オンラインディープクラスタリング(オンラインディープクラスタリング)とは、機能抽出ネットワークとクラスタリングモデルを組み合わせて、クラスタラベルを処理された各新しいデータポイントまたはバッチに割り当てることである。
オフラインメソッドよりも高速で汎用性が高いが、オンラインクラスタリングは、エンコーダがすべての入力を同じポイントにマッピングし、すべてを単一のクラスタに配置する、崩壊したソリューションに容易に到達することができる。
本稿では,データ拡張を必要としない手法を提案する。
論文 参考訳(メタデータ) (2023-03-29T08:23:26Z) - CADIS: Handling Cluster-skewed Non-IID Data in Federated Learning with
Clustered Aggregation and Knowledge DIStilled Regularization [3.3711670942444014]
フェデレーション学習は、エッジデバイスがデータを公開することなく、グローバルモデルを協調的にトレーニングすることを可能にする。
我々は、実際のデータセットで発見されたクラスタスキュード非IIDと呼ばれる新しいタイプの非IIDデータに取り組む。
本稿では,クラスタ間の平等を保証するアグリゲーション方式を提案する。
論文 参考訳(メタデータ) (2023-02-21T02:53:37Z) - Efficient Distribution Similarity Identification in Clustered Federated
Learning via Principal Angles Between Client Data Subspaces [59.33965805898736]
クラスタ学習は、クライアントをクラスタにグループ化することで、有望な結果をもたらすことが示されている。
既存のFLアルゴリズムは基本的に、クライアントを同様のディストリビューションでグループ化しようとしている。
以前のFLアルゴリズムは、訓練中に間接的に類似性を試みていた。
論文 参考訳(メタデータ) (2022-09-21T17:37:54Z) - Federated learning with incremental clustering for heterogeneous data [0.0]
以前のアプローチでは、クライアントをクラスタ化するには、サーバはクライアントにパラメータを同時に送信する必要がある。
本稿では,FLIC(Federated Learning with Incremental Clustering)を提案する。
我々は,この手法がクライアントを同じデータ分布に従うグループに分割することに成功していることを実証的に示す。
論文 参考訳(メタデータ) (2022-06-17T13:13:03Z) - On the Convergence of Clustered Federated Learning [57.934295064030636]
統合学習システムでは、例えばモバイルデバイスや組織参加者といったクライアントは通常、個人の好みや行動パターンが異なる。
本稿では,クライアントグループと各クライアントを統一最適化フレームワークで活用する,新しい重み付きクライアントベースクラスタリングFLアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-02-13T02:39:19Z) - You Never Cluster Alone [150.94921340034688]
我々は、主流のコントラスト学習パラダイムをクラスタレベルのスキームに拡張し、同じクラスタに属するすべてのデータが統一された表現に寄与する。
分類変数の集合をクラスタ化代入信頼度として定義し、インスタンスレベルの学習トラックとクラスタレベルの学習トラックを関連付ける。
代入変数を再パラメータ化することで、TCCはエンドツーエンドでトレーニングされる。
論文 参考訳(メタデータ) (2021-06-03T14:59:59Z) - Federated Learning with Taskonomy for Non-IID Data [0.0]
タスクノミーによる連合学習を導入する。
ワンオフプロセスでは、サーバーはクライアントに事前に訓練された(そして微調整可能な)エンコーダを提供し、データを遅延表現に圧縮し、データの署名をサーバーに送信します。
サーバは、マニホールド学習を通じてクライアント間のタスク関連性を学び、フェデレーション平均化の一般化を実行する。
論文 参考訳(メタデータ) (2021-03-29T20:47:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。