論文の概要: Breaking Fine-Grained Classification Barriers with Cost-Free Data in Few-Shot Class-Incremental Learning
- arxiv url: http://arxiv.org/abs/2412.20383v1
- Date: Sun, 29 Dec 2024 07:11:44 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-31 16:06:24.756399
- Title: Breaking Fine-Grained Classification Barriers with Cost-Free Data in Few-Shot Class-Incremental Learning
- Title(参考訳): Few-Shot Class-Incremental Learningにおける細粒度分類バリアのコストフリー化
- Authors: Li-Jun Zhao, Zhen-Duo Chen, Zhi-Yuan Xue, Xin Luo, Xin-Shun Xu,
- Abstract要約: 細粒度分類における障壁を破る新しい学習パラダイムを提案する。
これにより、標準的なトレーニングフェーズを超えてモデルを学習し、システム運用中に発生するコストフリーなデータの恩恵を受けることができる。
- 参考スコア(独自算出の注目度): 13.805180905579832
- License:
- Abstract: Current fine-grained classification research mainly concentrates on fine-grained feature learning, but in real-world applications, the bigger issue often lies in the data. Fine-grained data annotation is challenging, and the features and semantics are highly diverse and frequently changing, making traditional methods less effective in real-world scenarios. Although some studies have provided potential solutions to this issue, most are limited to making use of limited supervised information. In this paper, we propose a novel learning paradigm to break barriers in fine-grained classification. It enables the model to learn beyond the standard training phase and benefit from cost-free data encountered during system operation. On this basis, an efficient EXPloring and EXPloiting strategy and method (EXP2) is designed. Thereinto, before the final classification results are obtained, representative inference data samples are explored according to class templates and exploited to optimize classifiers. Experimental results demonstrate the general effectiveness of EXP2.
- Abstract(参考訳): 現在のきめ細かい分類研究は、主にきめ細かい特徴学習に焦点を当てているが、現実のアプリケーションでは、より大きな問題がデータにあることが多い。
詳細なデータアノテーションは困難で、機能やセマンティクスは非常に多様で、頻繁に変更されるため、従来のメソッドは現実のシナリオでは効果が低い。
この問題に対する潜在的な解決策を提供する研究もあるが、多くは限定的な教師付き情報の利用に限られている。
本稿では,細粒度分類における障壁を突破する新しい学習パラダイムを提案する。
これにより、標準的なトレーニングフェーズを超えてモデルを学習し、システム運用中に発生するコストフリーなデータの恩恵を受けることができる。
そこで, 効率的なEXP2戦略と手法を考案した。
そこで、最終分類結果を得る前に、クラステンプレートに基づいて代表推論データサンプルを探索し、分類器を最適化するために利用する。
実験によりEXP2の有効性が示された。
関連論文リスト
- TESSERACT: Eliminating Experimental Bias in Malware Classification
across Space and Time (Extended Version) [18.146377453918724]
マルウェア検知器は、常に進化するオペレーティングシステムや攻撃方法によって、しばしば性能劣化を経験する。
本論文は, 検出作業における2つの実験バイアス源により, 一般的に報告される結果が膨らんでいることを論じる。
論文 参考訳(メタデータ) (2024-02-02T12:27:32Z) - Adaptive End-to-End Metric Learning for Zero-Shot Cross-Domain Slot
Filling [2.6056468338837457]
スロットフィリングは、トレーニング中にサンプルを見ることのない新しいドメインを扱う上で重要な課題である。
ほとんどの先行研究は、メートル法学習に基づく2パスパイプライン方式でこの問題に対処している。
そこで本研究では,ゼロショットスロットの補充に挑戦する手法として,適応的なエンドツーエンドの計量学習手法を提案する。
論文 参考訳(メタデータ) (2023-10-23T19:01:16Z) - Open World Classification with Adaptive Negative Samples [89.2422451410507]
オープンワールド分類は、自然言語処理における重要な実践的妥当性と影響を伴う課題である。
そこで本研究では, アンダーライン適応型アンダーラインアンプ (ANS) に基づいて, 学習段階における効果的な合成オープンカテゴリサンプルを生成する手法を提案する。
ANSは最先端の手法よりも大幅に改善されている。
論文 参考訳(メタデータ) (2023-03-09T21:12:46Z) - Systematic Evaluation of Predictive Fairness [60.0947291284978]
バイアス付きデータセットのトレーニングにおけるバイアスの緩和は、重要なオープンな問題である。
複数のタスクにまたがる様々なデバイアス化手法の性能について検討する。
データ条件が相対モデルの性能に強い影響を与えることがわかった。
論文 参考訳(メタデータ) (2022-10-17T05:40:13Z) - Prototype-Anchored Learning for Learning with Imperfect Annotations [83.7763875464011]
不完全な注釈付きデータセットからバイアスのない分類モデルを学ぶことは困難である。
本稿では,様々な学習に基づく分類手法に容易に組み込むことができるプロトタイプ・アンコレッド学習法を提案する。
我々は,PALがクラス不均衡学習および耐雑音学習に与える影響を,合成および実世界のデータセットに関する広範な実験により検証した。
論文 参考訳(メタデータ) (2022-06-23T10:25:37Z) - CMW-Net: Learning a Class-Aware Sample Weighting Mapping for Robust Deep
Learning [55.733193075728096]
現代のディープニューラルネットワークは、破損したラベルやクラス不均衡を含むバイアス付きトレーニングデータに容易に適合する。
サンプル再重み付け手法は、このデータバイアス問題を緩和するために一般的に使用されている。
本稿では,データから直接明示的な重み付け方式を適応的に学習できるメタモデルを提案する。
論文 参考訳(メタデータ) (2022-02-11T13:49:51Z) - Bridging Non Co-occurrence with Unlabeled In-the-wild Data for
Incremental Object Detection [56.22467011292147]
物体検出における破滅的忘れを緩和するために,いくつかの漸進的学習法が提案されている。
有効性にもかかわらず、これらの手法は新規クラスのトレーニングデータにラベルのないベースクラスの共起を必要とする。
そこで本研究では,新たな授業の訓練において,欠落した基本クラスが原因で生じる非発生を補うために,未ラベルのインザ・ザ・ワイルドデータを使用することを提案する。
論文 参考訳(メタデータ) (2021-10-28T10:57:25Z) - Just Label What You Need: Fine-Grained Active Selection for Perception
and Prediction through Partially Labeled Scenes [78.23907801786827]
提案手法は,コストに配慮した手法と,部分的にラベル付けされたシーンを通じて詳細なサンプル選択を可能にする一般化を導入している。
実世界の大規模自動運転データセットに関する我々の実験は、微粒な選択が知覚、予測、下流計画タスクのパフォーマンスを向上させることを示唆している。
論文 参考訳(メタデータ) (2021-04-08T17:57:41Z) - A Realistic Evaluation of Semi-Supervised Learning for Fine-Grained
Classification [38.68079253627819]
本ベンチマークは, avesおよびfungi分類のクラスをサンプリングして得られた2つの細粒度分類データセットからなる。
最近提案されたSSLメソッドは大きなメリットをもたらし、深いネットワークがゼロから訓練されたときにクラス外のデータを効果的にパフォーマンスを向上させることができます。
我々の研究は、現実的データセットの専門家による半教師付き学習は、現在文学で普及しているものとは異なる戦略を必要とする可能性があることを示唆している。
論文 参考訳(メタデータ) (2021-04-01T17:59:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。