A Particle Algorithm for Mean-Field Variational Inference
- URL: http://arxiv.org/abs/2412.20385v2
- Date: Tue, 11 Feb 2025 14:37:00 GMT
- Title: A Particle Algorithm for Mean-Field Variational Inference
- Authors: Qiang Du, Kaizheng Wang, Edith Zhang, Chenyang Zhong,
- Abstract summary: We introduce a novel particle-based algorithm for mean-field variational inference.<n>We provide a non-asymptotic finite-particle convergence guarantee for our algorithm.
- Score: 1.912429179274357
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Variational inference is a fast and scalable alternative to Markov chain Monte Carlo and has been widely applied to posterior inference tasks in statistics and machine learning. A traditional approach for implementing mean-field variational inference (MFVI) is coordinate ascent variational inference (CAVI), which relies crucially on parametric assumptions on complete conditionals. In this paper, we introduce a novel particle-based algorithm for mean-field variational inference, which we term PArticle VI (PAVI). Notably, our algorithm does not rely on parametric assumptions on complete conditionals, and it applies to the nonparametric setting. We provide non-asymptotic finite-particle convergence guarantee for our algorithm. To our knowledge, this is the first end-to-end guarantee for particle-based MFVI.
Related papers
- Stability-based Generalization Bounds for Variational Inference [3.146069168382982]
Variational inference (VI) is widely used for approximate inference in Bayesian machine learning.
This paper develops stability based generalization bounds for a class of approximate Bayesian algorithms.
The new approach complements PAC-Bayes analysis and can provide tighter bounds in some cases.
arXiv Detail & Related papers (2025-02-17T22:40:26Z) - Statistical Inference for Temporal Difference Learning with Linear Function Approximation [62.69448336714418]
We study the consistency properties of TD learning with Polyak-Ruppert averaging and linear function approximation.
First, we derive a novel high-dimensional probability convergence guarantee that depends explicitly on the variance and holds under weak conditions.
We further establish refined high-dimensional Berry-Esseen bounds over the class of convex sets that guarantee faster rates than those in the literature.
arXiv Detail & Related papers (2024-10-21T15:34:44Z) - A Unified Theory of Stochastic Proximal Point Methods without Smoothness [52.30944052987393]
Proximal point methods have attracted considerable interest owing to their numerical stability and robustness against imperfect tuning.
This paper presents a comprehensive analysis of a broad range of variations of the proximal point method (SPPM)
arXiv Detail & Related papers (2024-05-24T21:09:19Z) - Extending Mean-Field Variational Inference via Entropic Regularization: Theory and Computation [2.2656885622116394]
Variational inference (VI) has emerged as a popular method for approximate inference for high-dimensional Bayesian models.
We propose a novel VI method that extends the naive mean field via entropic regularization.
We show that $Xi$-variational posteriors effectively recover the true posterior dependency.
arXiv Detail & Related papers (2024-04-14T01:40:11Z) - On the Convergence of Black-Box Variational Inference [16.895490556279647]
We provide the first convergence guarantee for full black-box variational inference (BBVI)
Our results hold for log-smooth posterior densities with and without strong log-concavity and the location-scale variational family.
arXiv Detail & Related papers (2023-05-24T16:59:50Z) - Online Learning with Adversaries: A Differential-Inclusion Analysis [52.43460995467893]
We introduce an observation-matrix-based framework for fully asynchronous online Federated Learning with adversaries.
Our main result is that the proposed algorithm almost surely converges to the desired mean $mu.$
We derive this convergence using a novel differential-inclusion-based two-timescale analysis.
arXiv Detail & Related papers (2023-04-04T04:32:29Z) - Manifold Gaussian Variational Bayes on the Precision Matrix [70.44024861252554]
We propose an optimization algorithm for Variational Inference (VI) in complex models.
We develop an efficient algorithm for Gaussian Variational Inference whose updates satisfy the positive definite constraint on the variational covariance matrix.
Due to its black-box nature, MGVBP stands as a ready-to-use solution for VI in complex models.
arXiv Detail & Related papers (2022-10-26T10:12:31Z) - On Representations of Mean-Field Variational Inference [2.4316550366482357]
We present a framework to analyze mean field variational inference (MFVI) algorithms.
Our approach enables the MFVI problem to be represented in three different manners.
Rigorous guarantees are established to show that a time-discretized implementation of the coordinate ascent variational inference algorithm yields a gradient flow in the limit.
arXiv Detail & Related papers (2022-10-20T16:26:22Z) - A Variational Inference Approach to Inverse Problems with Gamma
Hyperpriors [60.489902135153415]
This paper introduces a variational iterative alternating scheme for hierarchical inverse problems with gamma hyperpriors.
The proposed variational inference approach yields accurate reconstruction, provides meaningful uncertainty quantification, and is easy to implement.
arXiv Detail & Related papers (2021-11-26T06:33:29Z) - Scalable Variational Gaussian Processes via Harmonic Kernel
Decomposition [54.07797071198249]
We introduce a new scalable variational Gaussian process approximation which provides a high fidelity approximation while retaining general applicability.
We demonstrate that, on a range of regression and classification problems, our approach can exploit input space symmetries such as translations and reflections.
Notably, our approach achieves state-of-the-art results on CIFAR-10 among pure GP models.
arXiv Detail & Related papers (2021-06-10T18:17:57Z) - Statistical Guarantees for Transformation Based Models with Applications
to Implicit Variational Inference [8.333191406788423]
We provide theoretical justification for the use of non-linear latent variable models (NL-LVMs) in non-parametric inference.
We use the NL-LVMs to construct an implicit family of variational distributions, deemed GP-IVI.
To the best of our knowledge, this is the first work on providing theoretical guarantees for implicit variational inference.
arXiv Detail & Related papers (2020-10-23T21:06:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.