Open-Source Heterogeneous SoCs for AI: The PULP Platform Experience
- URL: http://arxiv.org/abs/2412.20391v1
- Date: Sun, 29 Dec 2024 08:04:54 GMT
- Title: Open-Source Heterogeneous SoCs for AI: The PULP Platform Experience
- Authors: Francesco Conti, Angelo Garofalo, Davide Rossi, Giuseppe Tagliavini, Luca Benini,
- Abstract summary: TheParallel Ultra-Low Power Platform project has been one of the most active and successful initiatives in designing research IPs and releasing them as open-source.
This article focuses on the PULP experience designing heterogeneous AI acceleration SOCs.
- Score: 14.233783488448752
- License:
- Abstract: Since 2013, the PULP (Parallel Ultra-Low Power) Platform project has been one of the most active and successful initiatives in designing research IPs and releasing them as open-source. Its portfolio now ranges from processor cores to network-on-chips, peripherals, SoC templates, and full hardware accelerators. In this article, we focus on the PULP experience designing heterogeneous AI acceleration SoCs - an endeavour encompassing SoC architecture definition; development, verification, and integration of acceleration IPs; front- and back-end VLSI design; testing; development of AI deployment software.
Related papers
- Transforming the Hybrid Cloud for Emerging AI Workloads [81.15269563290326]
This white paper envisions transforming hybrid cloud systems to meet the growing complexity of AI workloads.
The proposed framework addresses critical challenges in energy efficiency, performance, and cost-effectiveness.
This joint initiative aims to establish hybrid clouds as secure, efficient, and sustainable platforms.
arXiv Detail & Related papers (2024-11-20T11:57:43Z) - Accelerating AI and Computer Vision for Satellite Pose Estimation on the Intel Myriad X Embedded SoC [3.829322478948514]
This paper develops a hybrid AI/CV system on Intel's Movidius Myriad X for initializing and tracking the satellite's pose in space missions.
The proposed single-chip, robust-estimation, and real-time solution delivers a throughput of up to 5 FPS for 1-MegaPixel RGB images within a limited power envelope of 2W.
arXiv Detail & Related papers (2024-09-19T17:50:50Z) - Benchmarking End-To-End Performance of AI-Based Chip Placement Algorithms [77.71341200638416]
ChiPBench is a benchmark designed to evaluate the effectiveness of AI-based chip placement algorithms.
We have gathered 20 circuits from various domains (e.g., CPU, GPU, and microcontrollers) for evaluation.
Results show that even if intermediate metric of a single-point algorithm is dominant, the final PPA results are unsatisfactory.
arXiv Detail & Related papers (2024-07-03T03:29:23Z) - Evaluating Emerging AI/ML Accelerators: IPU, RDU, and NVIDIA/AMD GPUs [14.397623940689487]
Graphcore Intelligence Processing Unit (IPU), Sambanova Reconfigurable Dataflow Unit (RDU), and enhanced GPU platforms are reviewed.
This research provides a preliminary evaluation and comparison of these commercial AI/ML accelerators.
arXiv Detail & Related papers (2023-11-08T01:06:25Z) - Harnessing Deep Learning and HPC Kernels via High-Level Loop and Tensor Abstractions on CPU Architectures [67.47328776279204]
This work introduces a framework to develop efficient, portable Deep Learning and High Performance Computing kernels.
We decompose the kernel development in two steps: 1) Expressing the computational core using Processing Primitives (TPPs) and 2) Expressing the logical loops around TPPs in a high-level, declarative fashion.
We demonstrate the efficacy of our approach using standalone kernels and end-to-end workloads that outperform state-of-the-art implementations on diverse CPU platforms.
arXiv Detail & Related papers (2023-04-25T05:04:44Z) - Developing an AI-enabled IIoT platform -- Lessons learned from early use
case validation [47.37985501848305]
We introduce the design of this platform and discuss an early evaluation in terms of a demonstrator for AI-enabled visual quality inspection.
This is complemented by insights and lessons learned during this early evaluation activity.
arXiv Detail & Related papers (2022-07-10T18:51:12Z) - Composing Complex and Hybrid AI Solutions [52.00820391621739]
We describe an extension of the Acumos system towards enabling the above features for general AI applications.
Our extensions include support for more generic components with gRPC/Protobuf interfaces.
We provide examples of deployable solutions and their interfaces.
arXiv Detail & Related papers (2022-02-25T08:57:06Z) - YMIR: A Rapid Data-centric Development Platform for Vision Applications [82.67319997259622]
This paper introduces an open source platform for rapid development of computer vision applications.
The platform puts the efficient data development at the center of the machine learning development process.
arXiv Detail & Related papers (2021-11-19T05:02:55Z) - Enabling Design Methodologies and Future Trends forEdge AI:
Specialization and Co-design [37.54971466190214]
We provide a comprehensive survey of the latest enabling design methodologies that span the entire edge AI development stack.
We suggest that the key methodologies for effective edge AI development are single-layer specialization and cross-layer co-design.
arXiv Detail & Related papers (2021-03-25T16:29:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.