論文の概要: Comparative Performance of Advanced NLP Models and LLMs in Multilingual Geo-Entity Detection
- arxiv url: http://arxiv.org/abs/2412.20414v1
- Date: Sun, 29 Dec 2024 09:47:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-31 16:07:39.180895
- Title: Comparative Performance of Advanced NLP Models and LLMs in Multilingual Geo-Entity Detection
- Title(参考訳): 多言語ジオエンティティ検出における高度なNLPモデルとLLMの比較性能
- Authors: Kalin Kopanov,
- Abstract要約: 本稿では,主要なNLPモデルの包括的評価を行う。
精度,精度,リコール,F1スコアなどの指標を用いて,これらのモデルの性能について検討する。
この実験から得られた結論は、より高度で包括的なNLPツールの強化と作成を指向することを目的としている。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: The integration of advanced Natural Language Processing (NLP) methodologies and Large Language Models (LLMs) has significantly enhanced the extraction and analysis of geospatial data from multilingual texts, impacting sectors such as national and international security. This paper presents a comprehensive evaluation of leading NLP models -- SpaCy, XLM-RoBERTa, mLUKE, GeoLM -- and LLMs, specifically OpenAI's GPT 3.5 and GPT 4, within the context of multilingual geo-entity detection. Utilizing datasets from Telegram channels in English, Russian, and Arabic, we examine the performance of these models through metrics such as accuracy, precision, recall, and F1 scores, to assess their effectiveness in accurately identifying geospatial references. The analysis exposes each model's distinct advantages and challenges, underscoring the complexities involved in achieving precise geo-entity identification across varied linguistic landscapes. The conclusions drawn from this experiment aim to direct the enhancement and creation of more advanced and inclusive NLP tools, thus advancing the field of geospatial analysis and its application to global security.
- Abstract(参考訳): 先進自然言語処理(NLP)手法と大規模言語モデル(LLM)の統合により,多言語テキストからの地理空間データの抽出と解析が大幅に向上し,国家や国際安全保障などの分野に影響を及ぼした。
本稿では,多言語ジオエンタリティ検出の文脈において,主要なNLPモデル - SpaCy, XLM-RoBERTa, mLUKE, GeoLM -- と LLM ,特に OpenAI の GPT 3.5 と GPT 4 を総合的に評価する。
英語,ロシア語,アラビア語のTelegramチャンネルからのデータセットを用いて,精度,精度,リコール,F1スコアなどの指標を用いて,これらのモデルの性能を調べ,地理空間参照を正確に同定する上での有効性を評価する。
この分析は、各モデルの異なる利点と課題を明らかにし、様々な言語的景観をまたいだ正確な地理的密度の同定を行うのに必要な複雑さを浮き彫りにしている。
この実験から得られた結論は、より高度で包括的なNLPツールの強化と作成を推進し、地球空間解析の分野をグローバルセキュリティに適用することを目的としている。
関連論文リスト
- An LLM Agent for Automatic Geospatial Data Analysis [5.842462214442362]
大規模言語モデル(LLM)は、データサイエンスコード生成タスクで使われている。
複雑なデータ構造と空間的制約を組み込むのが困難であるため,空間空間データ処理への応用は困難である。
ジオアジェント(GeoAgent)は,LLMが地理空間データ処理をより効率的に処理できるように設計された対話型フレームワークである。
論文 参考訳(メタデータ) (2024-10-24T14:47:25Z) - Swarm Intelligence in Geo-Localization: A Multi-Agent Large Vision-Language Model Collaborative Framework [51.26566634946208]
smileGeoは、新しい視覚的ジオローカライゼーションフレームワークである。
エージェント間のコミュニケーションによって、SmithGeoはこれらのエージェントの固有の知識と、検索された情報を統合する。
その結果,本手法は現在の最先端手法よりも優れていた。
論文 参考訳(メタデータ) (2024-08-21T03:31:30Z) - Natural Language Processing for Dialects of a Language: A Survey [56.93337350526933]
最先端自然言語処理(NLP)モデルは、大規模なトレーニングコーパスでトレーニングされ、評価データセットで最上位のパフォーマンスを報告します。
この調査は、これらのデータセットの重要な属性である言語の方言を掘り下げる。
方言データセットにおけるNLPモデルの性能劣化と言語技術のエクイティへのその影響を動機として,我々はデータセットやアプローチの観点から,方言に対するNLPの過去の研究を調査した。
論文 参考訳(メタデータ) (2024-01-11T03:04:38Z) - GeoLLM: Extracting Geospatial Knowledge from Large Language Models [49.20315582673223]
大規模言語モデルから地理空間的知識を効果的に抽出する新しい手法であるGeoLLMを提案する。
我々は、人口密度や経済生活の計測など、国際社会への関心の中心となる複数の課題にまたがるアプローチの有用性を実証する。
実験の結果, LLMは試料効率が高く, 地理空間情報に富み, 世界中のロバストであることがわかった。
論文 参考訳(メタデータ) (2023-10-10T00:03:23Z) - Are Large Language Models Geospatially Knowledgeable? [21.401931052512595]
本稿では,Large Language Models (LLM) で符号化された地理空間的知識,認識,推論能力の程度について検討する。
自己回帰言語モデルに焦点をあて, (i) 地理座標系におけるLLMの探索と地理空間知識の評価, (ii) 地理空間的および非地理空間的前置法を用いて地理空間的意識を測定する, (iii) 多次元スケーリング(MDS) 実験を用いて, モデルの地理空間的推論能力を評価する, 実験手法を考案した。
論文 参考訳(メタデータ) (2023-10-09T17:20:11Z) - Cross-Lingual NER for Financial Transaction Data in Low-Resource
Languages [70.25418443146435]
半構造化テキストデータにおける言語間名前認識のための効率的なモデリングフレームワークを提案する。
我々は2つの独立したSMSデータセットを英語とアラビア語で使用し、それぞれが半構造化された銀行取引情報を持っている。
わずか30のラベル付きサンプルにアクセスすることで、我々のモデルは、英語からアラビア語までの商人、金額、その他の分野の認識を一般化することができる。
論文 参考訳(メタデータ) (2023-07-16T00:45:42Z) - Evaluating the Effectiveness of Large Language Models in Representing
Textual Descriptions of Geometry and Spatial Relations [2.8935588665357086]
本研究では,大規模言語モデル(LLM)の空間的関係の表現能力を評価することに焦点を当てた。
我々は GPT-2 や BERT などの LLM を用いて、よく知られたジオメトリのテキスト (WKT) フォーマットを符号化し、それらの埋め込みを分類器や回帰器に入力する。
実験では、LLMが生成した埋め込みは幾何型を保存し、いくつかの空間的関係(精度は73%まで)を捉えることができるが、数値を推定し、空間的関連オブジェクトを検索する際の課題が残っている。
論文 参考訳(メタデータ) (2023-07-05T03:50:08Z) - Geographic Adaptation of Pretrained Language Models [29.81557992080902]
マルチタスク学習環境において,言語モデリングと位置情報予測を併用する中間学習ステップであるジオアダプテーションを導入する。
ジオアダプテーションの有効性は、事前訓練された言語モデルの表現空間を地理的に再現する能力に起因していることを示す。
論文 参考訳(メタデータ) (2022-03-16T11:55:00Z) - A Unified Strategy for Multilingual Grammatical Error Correction with
Pre-trained Cross-Lingual Language Model [100.67378875773495]
本稿では,多言語文法的誤り訂正のための汎用的かつ言語に依存しない戦略を提案する。
我々の手法は言語固有の操作を使わずに多様な並列GECデータを生成する。
NLPCC 2018 Task 2のデータセット(中国語)で最先端の結果を達成し、Falko-Merlin(ドイツ語)とRULEC-GEC(ロシア語)の競合性能を得る。
論文 参考訳(メタデータ) (2022-01-26T02:10:32Z) - TextFlint: Unified Multilingual Robustness Evaluation Toolkit for
Natural Language Processing [73.16475763422446]
NLPタスク(TextFlint)のための多言語ロバスト性評価プラットフォームを提案する。
普遍的なテキスト変換、タスク固有の変換、敵攻撃、サブポピュレーション、およびそれらの組み合わせを取り入れ、包括的な堅牢性分析を提供する。
TextFlintは、モデルの堅牢性の欠点に対処するために、完全な分析レポートとターゲットとした拡張データを生成します。
論文 参考訳(メタデータ) (2021-03-21T17:20:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。