論文の概要: Integrating Natural Language Processing Techniques of Text Mining Into Financial System: Applications and Limitations
- arxiv url: http://arxiv.org/abs/2412.20438v1
- Date: Sun, 29 Dec 2024 11:25:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-31 16:07:03.738461
- Title: Integrating Natural Language Processing Techniques of Text Mining Into Financial System: Applications and Limitations
- Title(参考訳): テキストマイニングの自然言語処理技術を金融システムに統合する:応用と限界
- Authors: Denisa Millo, Blerina Vika, Nevila Baci,
- Abstract要約: 本研究では,金融システムの各種構成要素における自然言語処理技術としてのテキストマイニングの活用について検討する。
研究は、新しい特定のアルゴリズムが開発され、金融システムの焦点は主に資産価格コンポーネントに焦点を当てていることに気づいた。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: The financial sector, a pivotal force in economic development, increasingly uses the intelligent technologies such as natural language processing to enhance data processing and insight extraction. This research paper through a review process of the time span of 2018-2023 explores the use of text mining as natural language processing techniques in various components of the financial system including asset pricing, corporate finance, derivatives, risk management, and public finance and highlights the need to address the specific problems in the discussion section. We notice that most of the research materials combined probabilistic with vector-space models, and text-data with numerical ones. The most used technique regarding information processing is the information classification technique and the most used algorithms include the long-short term memory and bidirectional encoder models. The research noticed that new specific algorithms are developed and the focus of the financial system is mainly on asset pricing component. The research also proposes a path from engineering perspective for researchers who need to analyze financial text. The challenges regarding text mining perspective such as data quality, context-adaption and model interpretability need to be solved so to integrate advanced natural language processing models and techniques in enhancing financial analysis and prediction. Keywords: Financial System (FS), Natural Language Processing (NLP), Software and Text Engineering, Probabilistic, Vector-Space, Models, Techniques, TextData, Financial Analysis.
- Abstract(参考訳): 経済発展における重要な力である金融セクターは、自然言語処理などのインテリジェントな技術を活用して、データ処理と洞察抽出を強化している。
本研究は、2018~2023年の期間のレビュープロセスを通じて、資産価格、企業財務、デリバティブ、リスク管理、公的金融など、金融システムの様々な構成要素における自然言語処理技術としてのテキストマイニングの利用について検討し、議論節における特定の問題に対処する必要性を強調している。
研究資料の多くは、確率論的にベクトル空間モデル、テキストデータと数値データを組み合わせたものである。
情報処理に関する最もよく使われる技術は情報分類技術であり、最もよく使われるアルゴリズムは長期記憶と双方向エンコーダモデルである。
研究は、新しい特定のアルゴリズムが開発され、金融システムの焦点は主に資産価格コンポーネントに焦点を当てていることに気づいた。
この研究はまた、金融テキストを分析する必要がある研究者にとって、エンジニアリングの観点からの道筋も提案している。
データ品質、文脈適応、モデル解釈可能性といったテキストマイニングの観点からの課題は、金融分析と予測の強化に先進的な自然言語処理モデルと技術を統合するために解決する必要がある。
キーワード:金融システム(FS)、自然言語処理(NLP)、ソフトウェアとテキストエンジニアリング、確率的、ベクトル空間、モデル、技術、テキストデータ、財務分析。
関連論文リスト
- A Survey of Large Language Models for Financial Applications: Progress, Prospects and Challenges [60.546677053091685]
大規模言語モデル(LLM)は金融分野における機械学習アプリケーションに新たな機会を開放した。
我々は、従来のプラクティスを変革し、イノベーションを促進する可能性に焦点を当て、様々な金融業務におけるLLMの適用について検討する。
本稿では,既存の文献を言語タスク,感情分析,財務時系列,財務推論,エージェントベースモデリング,その他の応用分野に分類するための調査を紹介する。
論文 参考訳(メタデータ) (2024-06-15T16:11:35Z) - Automatic detection of relevant information, predictions and forecasts in financial news through topic modelling with Latent Dirichlet Allocation [9.059679096341474]
我々は、関連するテキストを特定するための財務ニュースの分析と、そのテキストの中で予測と予測に焦点を当てる。
本稿では、投資家が関連する金融事象を検出するのを支援するために、新たな自然言語処理(NLP)システムを提案する。
論文 参考訳(メタデータ) (2024-03-30T17:49:34Z) - Detection of Temporality at Discourse Level on Financial News by Combining Natural Language Processing and Machine Learning [8.504685056067144]
Bloomberg News、CNN Business、Forbesといった金融関連のニュースは、市場スクリーニングシステムにとって貴重なデータ源である。
談話レベルでの財務関連ニュースの時間性を検出する新しいシステムを提案する。
この分野の知識を持つ研究者によって注釈付けされた金融関連ニュースのラベル付きデータセットを用いて,本システムを検証した。
論文 参考訳(メタデータ) (2024-03-30T16:40:10Z) - AlphaFin: Benchmarking Financial Analysis with Retrieval-Augmented Stock-Chain Framework [48.3060010653088]
我々はAlphaFinデータセットをリリースし、従来の研究データセット、リアルタイム財務データ、手書きのチェーン・オブ・プリート(CoT)データを組み合わせています。
次に、AlphaFinデータセットを使用して、金融分析タスクを効果的に処理するために、Stock-Chainと呼ばれる最先端の手法をベンチマークします。
論文 参考訳(メタデータ) (2024-03-19T09:45:33Z) - Combatting Human Trafficking in the Cyberspace: A Natural Language
Processing-Based Methodology to Analyze the Language in Online Advertisements [55.2480439325792]
このプロジェクトは、高度自然言語処理(NLP)技術により、オンラインC2Cマーケットプレースにおける人身売買の急激な問題に取り組む。
我々は、最小限の監督で擬似ラベル付きデータセットを生成する新しい手法を導入し、最先端のNLPモデルをトレーニングするための豊富なリソースとして機能する。
重要な貢献は、Integrated Gradientsを使った解釈可能性フレームワークの実装であり、法執行にとって重要な説明可能な洞察を提供する。
論文 参考訳(メタデータ) (2023-11-22T02:45:01Z) - Financial data analysis application via multi-strategy text processing [0.2741266294612776]
本稿では、主に中国A株会社の株価取引データとニュースに焦点を当てる。
本稿では,自然言語処理(NLP)と知識グラフ(KG)技術を用いた金融テキスト処理アプリケーションシナリオの深層学習に向けた取り組みと計画について述べる。
論文 参考訳(メタデータ) (2022-04-25T01:56:36Z) - Faithfulness in Natural Language Generation: A Systematic Survey of
Analysis, Evaluation and Optimization Methods [48.47413103662829]
自然言語生成(NLG)は,事前学習型言語モデルなどの深層学習技術の発展により,近年大きく進歩している。
しかし、生成したテキストが通常不信または非実情報を含むという忠実性問題は、最大の課題となっている。
論文 参考訳(メタデータ) (2022-03-10T08:28:32Z) - Systematic Inequalities in Language Technology Performance across the
World's Languages [94.65681336393425]
本稿では,言語技術のグローバルな有用性を評価するためのフレームワークを紹介する。
本分析では, ユーザ対応技術と言語的NLPタスクの両面において, より深く研究されている。
論文 参考訳(メタデータ) (2021-10-13T14:03:07Z) - FinQA: A Dataset of Numerical Reasoning over Financial Data [52.7249610894623]
我々は、大量の財務文書の分析を自動化することを目的として、財務データに関する深い質問に答えることに重点を置いている。
我々は,金融専門家が作成した財務報告に対して質問回答のペアを用いた,新たな大規模データセットFinQAを提案する。
その結果、人気があり、大規模で、事前訓練されたモデルは、金融知識を得るための専門的な人間には程遠いことが示される。
論文 参考訳(メタデータ) (2021-09-01T00:08:14Z) - Text analysis in financial disclosures [0.0]
会社の財務情報開示の殆どは、構造化されていないテキストである。
研究者は最近、情報開示のテキストコンテンツを分析し始めた。
この研究は、現在の感情指標の焦点の限界を強調して、開示分析方法に寄与する。
論文 参考訳(メタデータ) (2021-01-06T17:45:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。