論文の概要: Enhancing Entertainment Translation for Indian Languages using Adaptive Context, Style and LLMs
- arxiv url: http://arxiv.org/abs/2412.20440v1
- Date: Sun, 29 Dec 2024 11:33:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-31 16:01:17.490499
- Title: Enhancing Entertainment Translation for Indian Languages using Adaptive Context, Style and LLMs
- Title(参考訳): 適応文脈, スタイル, LLMを用いたインド語のエンターテイメント翻訳の強化
- Authors: Pratik Rakesh Singh, Mohammadi Zaki, Pankaj Wasnik,
- Abstract要約: 本稿では,現在のセッションの文脈とスタイルを推定するアルゴリズムを導入し,これらの推定値を用いてLLM(Large Language Model)を誘導し,高品質な翻訳を生成するプロンプトを生成する。
本手法はLLMに依存しない言語であり,汎用ツールである。
- 参考スコア(独自算出の注目度): 3.55026004901472
- License:
- Abstract: We address the challenging task of neural machine translation (NMT) in the entertainment domain, where the objective is to automatically translate a given dialogue from a source language content to a target language. This task has various applications, particularly in automatic dubbing, subtitling, and other content localization tasks, enabling source content to reach a wider audience. Traditional NMT systems typically translate individual sentences in isolation, without facilitating knowledge transfer of crucial elements such as the context and style from previously encountered sentences. In this work, we emphasize the significance of these fundamental aspects in producing pertinent and captivating translations. We demonstrate their significance through several examples and propose a novel framework for entertainment translation, which, to our knowledge, is the first of its kind. Furthermore, we introduce an algorithm to estimate the context and style of the current session and use these estimations to generate a prompt that guides a Large Language Model (LLM) to generate high-quality translations. Our method is both language and LLM-agnostic, making it a general-purpose tool. We demonstrate the effectiveness of our algorithm through various numerical studies and observe significant improvement in the COMET scores over various state-of-the-art LLMs. Moreover, our proposed method consistently outperforms baseline LLMs in terms of win-ratio.
- Abstract(参考訳): エンターテイメント領域におけるニューラルマシン翻訳(NMT)の課題に対処し、その目的は、ソース言語コンテンツからターゲット言語への対話を自動的に翻訳することである。
このタスクは、特に自動ダビング、サブティットリング、その他のコンテンツローカライズタスクにおいて様々な応用があり、ソースコンテンツがより広い読者にリーチすることができる。
従来のNMTシステムは通常、それまで遭遇した文からコンテキストやスタイルなどの重要な要素の知識伝達を促進することなく、個別の文を単独で翻訳する。
本研究は,これらの基本的側面の重要さを強調するものである。
本稿では,いくつかの事例を通じてその意義を実証し,我々の知る限り,その種の第一に,エンターテイメント翻訳のための新しい枠組みを提案する。
さらに,現在のセッションの文脈とスタイルを推定するアルゴリズムを導入し,これらの推定値を用いて,Large Language Model (LLM) を誘導して高品質な翻訳を生成するプロンプトを生成する。
本手法はLLMに依存しない言語であり,汎用ツールである。
本研究は,様々な数値計算によるアルゴリズムの有効性を実証し,多種多様な技術 LLM に対するCOMET スコアの大幅な改善を観察する。
さらに,提案手法は,勝利率の観点から,ベースラインLLMよりも一貫して優れる。
関連論文リスト
- Beyond English: The Impact of Prompt Translation Strategies across Languages and Tasks in Multilingual LLMs [13.458891794688551]
我々は,低リソース言語と高リソース言語の両方をカバーする35言語を対象とした事前翻訳戦略を評価する。
本実験は,英語との類似性,翻訳品質,事前学習データのサイズなどの要因が,事前翻訳によるモデル性能に与える影響を示す。
論文 参考訳(メタデータ) (2025-02-13T13:49:30Z) - Lost in Translation, Found in Context: Sign Language Translation with Contextual Cues [56.038123093599815]
我々の目的は、連続手話から音声言語テキストへの翻訳である。
署名ビデオと追加のコンテキストキューを組み込む。
文脈的アプローチが翻訳の質を著しく向上させることを示す。
論文 参考訳(メタデータ) (2025-01-16T18:59:03Z) - Real-Time Multilingual Sign Language Processing [4.626189039960495]
手話処理(SLP)は、自然言語処理(NLP)とコンピュータビジョンからなる学際分野である。
伝統的なアプローチは、言語固有のものであり、手話の多次元的な性質を捉えるのに不十分なグロスベースのシステムを使用することによって、しばしば制約されてきた。
本稿では,手話文字起こし表記システムであるSignWiringを,手話の視覚・ジェスチャーのモダリティとテキストに基づく言語表現の中間的リンクとして用いることを提案する。
論文 参考訳(メタデータ) (2024-12-02T21:51:41Z) - Efficiently Exploring Large Language Models for Document-Level Machine Translation with In-context Learning [38.89119606657543]
文レベルの翻訳とは対照的に、文脈内学習に基づく大規模言語モデル(LLM)による文書レベルの翻訳(DOCMT)は2つの大きな課題に直面している。
本研究では,文脈認識型プロンプト法(CAP)を提案する。
様々なDOCMTタスクに対して広範な実験を行い,本手法の有効性を実証した。
論文 参考訳(メタデータ) (2024-06-11T09:11:17Z) - Text-Video Retrieval with Global-Local Semantic Consistent Learning [122.15339128463715]
我々は,シンプルで効果的なグローバル局所意味的一貫性学習(GLSCL)を提案する。
GLSCLは、テキストビデオ検索のためのモダリティをまたいだ潜在共有セマンティクスを活用する。
本手法はSOTAと同等の性能を実現し,計算コストの約220倍の高速化を実現している。
論文 参考訳(メタデータ) (2024-05-21T11:59:36Z) - Machine Translation with Large Language Models: Prompt Engineering for
Persian, English, and Russian Directions [0.0]
生成型大規模言語モデル(LLM)は、様々な自然言語処理(NLP)タスクにおいて、例外的な習熟性を示している。
我々は,ペルシャ語,英語,ロシア語の言語間組み合わせに着目した2つの普及促進手法とその組み合わせについて調査を行った。
論文 参考訳(メタデータ) (2024-01-16T15:16:34Z) - The Interpreter Understands Your Meaning: End-to-end Spoken Language
Understanding Aided by Speech Translation [13.352795145385645]
音声翻訳(ST)は、エンドツーエンドの音声言語理解のために、音声モデルを事前訓練する良い方法である。
我々は,本モデルが単言語および多言語意図分類に基づくベースラインよりも高い性能を達成することを示す。
また、音声要約のための新しいベンチマークデータセットを作成し、低リソース/ゼロショットを英語からフランス語またはスペイン語に転送する。
論文 参考訳(メタデータ) (2023-05-16T17:53:03Z) - Beyond Contrastive Learning: A Variational Generative Model for
Multilingual Retrieval [109.62363167257664]
本稿では,多言語テキスト埋め込み学習のための生成モデルを提案する。
我々のモデルは、$N$言語で並列データを操作する。
本手法は, 意味的類似性, ビットクストマイニング, 言語間質問検索などを含む一連のタスクに対して評価を行う。
論文 参考訳(メタデータ) (2022-12-21T02:41:40Z) - Multilingual Word Sense Disambiguation with Unified Sense Representation [55.3061179361177]
本稿では,知識と教師付き多言語単語センス曖昧化(MWSD)システムを提案する。
我々は複数の言語に統一されたセンス表現を構築し、リッチソース言語から貧しい言語へアノテーションを転送することでMWSDのアノテーション不足問題に対処する。
SemEval-13およびSemEval-15データセットの評価により,提案手法の有効性が示された。
論文 参考訳(メタデータ) (2022-10-14T01:24:03Z) - FILTER: An Enhanced Fusion Method for Cross-lingual Language
Understanding [85.29270319872597]
我々は,XLMファインタニングの入力として言語間データを利用する拡張融合法を提案する。
推論中は、ターゲット言語で入力されたテキストとソース言語の翻訳に基づいて予測を行う。
この問題に対処するため,対象言語における翻訳テキストのための自動生成ソフト擬似ラベルに基づくモデル学習のためのKL分割自己学習損失を提案する。
論文 参考訳(メタデータ) (2020-09-10T22:42:15Z) - Exploring the Limits of Transfer Learning with a Unified Text-to-Text
Transformer [64.22926988297685]
下流タスクで微調整される前に、まずデータリッチタスクでモデルが事前訓練されるトランスファーラーニングは、自然言語処理(NLP)において強力な手法として登場した。
本稿では,すべてのテキストベースの言語問題をテキスト・トゥ・テキスト・フォーマットに変換する統一フレームワークにより,NLPのためのトランスファー学習手法を導入する状況について検討する。
論文 参考訳(メタデータ) (2019-10-23T17:37:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。