論文の概要: Goal-Conditioned Data Augmentation for Offline Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2412.20519v1
- Date: Sun, 29 Dec 2024 16:42:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-31 16:01:57.240745
- Title: Goal-Conditioned Data Augmentation for Offline Reinforcement Learning
- Title(参考訳): オフライン強化学習のためのゴールコンディション付きデータ強化
- Authors: Xingshuai Huang, Di Wu Member, Benoit Boulet,
- Abstract要約: Goal-cOnditioned Data Augmentation (GODA) は、ゴール条件付き拡散法である。
GODAは、元のオフラインデータセットの包括的な分布表現を学習し、選択的に高いリターン目標を持つ新しいデータを生成する。
我々は,D4RLベンチマークと実世界の課題,特に交通信号制御(TSC)タスクについて実験を行い,GODAの有効性を実証する。
- 参考スコア(独自算出の注目度): 3.5775697416994485
- License:
- Abstract: Offline reinforcement learning (RL) enables policy learning from pre-collected offline datasets, relaxing the need to interact directly with the environment. However, limited by the quality of offline datasets, it generally fails to learn well-qualified policies in suboptimal datasets. To address datasets with insufficient optimal demonstrations, we introduce Goal-cOnditioned Data Augmentation (GODA), a novel goal-conditioned diffusion-based method for augmenting samples with higher quality. Leveraging recent advancements in generative modeling, GODA incorporates a novel return-oriented goal condition with various selection mechanisms. Specifically, we introduce a controllable scaling technique to provide enhanced return-based guidance during data sampling. GODA learns a comprehensive distribution representation of the original offline datasets while generating new data with selectively higher-return goals, thereby maximizing the utility of limited optimal demonstrations. Furthermore, we propose a novel adaptive gated conditioning method for processing noised inputs and conditions, enhancing the capture of goal-oriented guidance. We conduct experiments on the D4RL benchmark and real-world challenges, specifically traffic signal control (TSC) tasks, to demonstrate GODA's effectiveness in enhancing data quality and superior performance compared to state-of-the-art data augmentation methods across various offline RL algorithms.
- Abstract(参考訳): オフライン強化学習(RL)は、事前にコンパイルされたオフラインデータセットからポリシー学習を可能にし、環境と直接対話する必要性を緩和する。
しかし、オフラインデータセットの品質に制限されているため、一般的には、最適以下のデータセットで適切なポリシーを学ぶことができません。
最適な実証が不十分なデータセットに対処するために,Goal-cOnditioned Data Augmentation (GODA)を導入する。
GODAは、生成モデリングの最近の進歩を生かし、様々な選択機構を備えた新しいリターン指向のゴール条件を取り入れている。
具体的には、データサンプリング中の戻り値に基づくガイダンスを強化するための、制御可能なスケーリング手法を提案する。
GODAは、元のオフラインデータセットの包括的な分布表現を学習し、選択的に高いリターン目標を持つ新しいデータを生成し、限られた最適なデモンストレーションの有用性を最大化する。
さらに,雑音の入力や条件を処理するための新しい適応ゲート条件付け手法を提案する。
我々は、D4RLベンチマークと実世界の課題、特に交通信号制御(TSC)タスクについて実験を行い、GODAが様々なオフラインRLアルゴリズムにおける最先端データ拡張手法と比較して、データ品質と優れた性能を向上させることの有効性を実証する。
関連論文リスト
- D5RL: Diverse Datasets for Data-Driven Deep Reinforcement Learning [99.33607114541861]
ロボット操作と移動環境の現実的なシミュレーションに焦点を当てたオフラインRLのための新しいベンチマークを提案する。
提案するベンチマークでは、状態ベースドメインと画像ベースドメインを対象とし、オフラインRLとオンライン微調整評価の両方をサポートしている。
論文 参考訳(メタデータ) (2024-08-15T22:27:00Z) - Learning Goal-Conditioned Policies from Sub-Optimal Offline Data via Metric Learning [22.174803826742963]
目標条件付きオフライン強化学習における最適データセットからの最適行動学習の問題に対処する。
本稿では,目標条件付きオフラインRL問題に対する最適値関数を近似するための計量学習法を提案する。
本手法は,分布外推定誤差に悩まされることなく,高度に最適化されたオフラインデータセットから最適な挙動を推定する。
論文 参考訳(メタデータ) (2024-02-16T16:46:53Z) - CUDC: A Curiosity-Driven Unsupervised Data Collection Method with
Adaptive Temporal Distances for Offline Reinforcement Learning [62.58375643251612]
本稿では,Curiosity-driven Unsupervised Data Collection (CUDC)法を提案する。
この適応的な到達性機構により、特徴表現は多様化することができ、エージェントは、好奇心で高品質なデータを集めるために自分自身をナビゲートすることができる。
実験的に、CUDCはDeepMindコントロールスイートの様々なダウンストリームオフラインRLタスクにおいて、既存の教師なし手法よりも効率と学習性能が優れている。
論文 参考訳(メタデータ) (2023-12-19T14:26:23Z) - Small Dataset, Big Gains: Enhancing Reinforcement Learning by Offline
Pre-Training with Model Based Augmentation [59.899714450049494]
オフラインの事前トレーニングは、準最適ポリシーを生成し、オンライン強化学習のパフォーマンスを低下させる可能性がある。
本稿では,オフライン強化学習による事前学習のメリットを最大化し,有効となるために必要なデータの規模を削減するためのモデルベースデータ拡張戦略を提案する。
論文 参考訳(メタデータ) (2023-12-15T14:49:41Z) - Model-based trajectory stitching for improved behavioural cloning and
its applications [7.462336024223669]
トラジェクティブ・スティッチング(TS)は、元のデータで切断された状態のペアを縫い合わせることで、新しいトラジェクトリを生成する。
古い軌道を新しい軌道に置き換える反復的プロセスが、基礎となる行動方針を漸進的に改善することを示した。
論文 参考訳(メタデータ) (2022-12-08T14:18:04Z) - Latent-Variable Advantage-Weighted Policy Optimization for Offline RL [70.01851346635637]
オフラインの強化学習メソッドは、新しいトランジションを環境に問い合わせる必要なしに、事前にコンパイルされたデータセットから学習ポリシーを保証します。
実際には、オフラインデータセットは、しばしば異種、すなわち様々なシナリオで収集される。
より広範な政策分布を表現できる潜在変数ポリシーを活用することを提案する。
提案手法は,次回のオフライン強化学習法の性能を,異種データセット上で49%向上させる。
論文 参考訳(メタデータ) (2022-03-16T21:17:03Z) - DARA: Dynamics-Aware Reward Augmentation in Offline Reinforcement
Learning [17.664027379555183]
オフライン強化学習アルゴリズムは、固定データセットが利用可能で、新しいエクスペリエンスを取得できないような設定に適用されることを約束する。
本稿では,他のダイナミックスから収集した(ソース)オフラインデータを用いて,大規模な(ターゲット)オフラインデータの要求を緩和することで,オフラインダイナミックス適応を定式化する。
ターゲットとするオフラインデータの量が少ないため、シミュレーションと実世界の両方のタスクにおいて、従来のオフラインRLメソッドよりも一貫してパフォーマンスが向上します。
論文 参考訳(メタデータ) (2022-03-13T14:30:55Z) - Behavioral Priors and Dynamics Models: Improving Performance and Domain
Transfer in Offline RL [82.93243616342275]
適応行動優先型オフラインモデルに基づくRL(Adaptive Behavioral Priors:MABE)を導入する。
MABEは、ドメイン内の一般化をサポートする動的モデルと、ドメイン間の一般化をサポートする振る舞いの事前が相補的であることの発見に基づいている。
クロスドメインの一般化を必要とする実験では、MABEが先行手法より優れていることが判明した。
論文 参考訳(メタデータ) (2021-06-16T20:48:49Z) - JUMBO: Scalable Multi-task Bayesian Optimization using Offline Data [86.8949732640035]
追加データをクエリすることで制限をサイドステップするMBOアルゴリズムであるJUMBOを提案する。
GP-UCBに類似した条件下では, 応答が得られないことを示す。
実世界の2つの最適化問題に対する既存手法に対する性能改善を実証的に示す。
論文 参考訳(メタデータ) (2021-06-02T05:03:38Z) - Generalization in Reinforcement Learning by Soft Data Augmentation [11.752595047069505]
SODA(Soft Data Augmentation)は、政策学習からAugmentationを分離する手法である。
我々は、最先端のビジョンベースRL法によるトレーニングにおいて、サンプル効率、一般化、安定性を著しく向上するSODAを見出した。
論文 参考訳(メタデータ) (2020-11-26T17:00:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。