論文の概要: Conformable Convolution for Topologically Aware Learning of Complex Anatomical Structures
- arxiv url: http://arxiv.org/abs/2412.20608v1
- Date: Sun, 29 Dec 2024 22:41:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-31 22:07:02.671843
- Title: Conformable Convolution for Topologically Aware Learning of Complex Anatomical Structures
- Title(参考訳): 複雑な解剖構造のトポロジカル・アウェアラーニングのためのコンフォーマブル・コンボリューション
- Authors: Yousef Yeganeh, Rui Xiao, Goktug Guvercin, Nassir Navab, Azade Farshad,
- Abstract要約: トポロジ的一貫性を明示するために設計された新しい畳み込み層であるConformable Convolutionを紹介する。
Topological Posterior Generator (TPG)モジュールは、重要なトポロジ的特徴を特定し、畳み込み層をガイドする。
本稿では,構造物の相互接続性維持が重要となるセグメンテーション作業におけるフレームワークの有効性を示す。
- 参考スコア(独自算出の注目度): 38.20599800950335
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While conventional computer vision emphasizes pixel-level and feature-based objectives, medical image analysis of intricate biological structures necessitates explicit representation of their complex topological properties. Despite their successes, deep learning models often struggle to accurately capture the connectivity and continuity of fine, sometimes pixel-thin, yet critical structures due to their reliance on implicit learning from data. Such shortcomings can significantly impact the reliability of analysis results and hinder clinical decision-making. To address this challenge, we introduce Conformable Convolution, a novel convolutional layer designed to explicitly enforce topological consistency. Conformable Convolution learns adaptive kernel offsets that preferentially focus on regions of high topological significance within an image. This prioritization is guided by our proposed Topological Posterior Generator (TPG) module, which leverages persistent homology. The TPG module identifies key topological features and guides the convolutional layers by applying persistent homology to feature maps transformed into cubical complexes. Our proposed modules are architecture-agnostic, enabling them to be integrated seamlessly into various architectures. We showcase the effectiveness of our framework in the segmentation task, where preserving the interconnectedness of structures is critical. Experimental results on three diverse datasets demonstrate that our framework effectively preserves the topology in the segmentation downstream task, both quantitatively and qualitatively.
- Abstract(参考訳): 従来のコンピュータビジョンはピクセルレベルと特徴に基づく目的を強調するが、複雑な生物学的構造の医用画像解析は複雑なトポロジカルな性質の明示を必要とする。
彼らの成功にもかかわらず、ディープラーニングモデルは、データからの暗黙の学習に依存しているため、細かな、時にはピクセルの薄い、重要な構造の接続性と連続性を正確に捉えるのに苦労することが多い。
このような欠点は、分析結果の信頼性に大きな影響を与え、臨床的な意思決定を妨げる可能性がある。
この課題に対処するために、トポロジ的一貫性を明確に強制するために設計された、新しい畳み込み層であるConformable Convolutionを紹介します。
Conformable Convolutionは、画像内の位相的重要性の高い領域に優先的にフォーカスする適応的なカーネルオフセットを学習する。
この優先順位付けは、永続的ホモロジーを利用するTPGモジュールによって導かれる。
TPGモジュールは、重要な位相的特徴を識別し、立体複体に変換された特徴写像に永続的ホモロジーを適用することにより、畳み込み層を導く。
提案するモジュールはアーキテクチャに依存しないため,さまざまなアーキテクチャにシームレスに統合することが可能です。
本稿では,構造物の相互接続性維持が重要となるセグメンテーション作業におけるフレームワークの有効性を示す。
3つの多種多様なデータセットに対する実験結果から,本フレームワークは下流のセグメンテーションにおけるトポロジを定量的・定性的に効果的に保存することを示した。
関連論文リスト
- Topology preserving Image segmentation using the iterative convolution-thresholding method [9.341617883846702]
本稿では, 反復的畳み込み保持法(ICTM)にトポロジ保存制約を導入する。
実験により,対象物体のトポロジ特性を明示的に保存することにより,精度とロバスト性を向上することを示した。
論文 参考訳(メタデータ) (2025-03-22T14:59:15Z) - MIRROR: Multi-Modal Pathological Self-Supervised Representation Learning via Modality Alignment and Retention [52.106879463828044]
病理組織学と転写学は、腫瘍学の基本的なモダリティであり、疾患の形態学的および分子的側面を包含している。
モーダルアライメントと保持を両立させる新しいマルチモーダル表現学習法であるMIRRORを提案する。
がんの亜型化と生存分析のためのTCGAコホートに関する広範囲な評価は,MIRRORの優れた性能を浮き彫りにしている。
論文 参考訳(メタデータ) (2025-03-01T07:02:30Z) - Interpretable deformable image registration: A geometric deep learning perspective [9.13809412085203]
解釈可能な登録フレームワークを設計するための理論的基盤を提示する。
粗い方法で変換を洗練するエンドツーエンドのプロセスを定式化します。
我々は、最先端のアプローチよりもパフォーマンスの指標が大幅に改善されたと結論付けている。
論文 参考訳(メタデータ) (2024-12-17T19:47:10Z) - Revisiting Adaptive Cellular Recognition Under Domain Shifts: A Contextual Correspondence View [49.03501451546763]
生物学的文脈における暗黙の対応の重要性を明らかにする。
モデル構成成分間のインスタンス認識トレードオフを確保するために, 自己適応型動的蒸留を提案する。
論文 参考訳(メタデータ) (2024-07-14T04:41:16Z) - Bayesian Unsupervised Disentanglement of Anatomy and Geometry for Deep Groupwise Image Registration [50.62725807357586]
本稿では,マルチモーダル群画像登録のための一般ベイズ学習フレームワークを提案する。
本稿では,潜在変数の推論手順を実現するために,新しい階層的変分自動符号化アーキテクチャを提案する。
心臓、脳、腹部の医療画像から4つの異なるデータセットを含む,提案された枠組みを検証する実験を行った。
論文 参考訳(メタデータ) (2024-01-04T08:46:39Z) - On Characterizing the Evolution of Embedding Space of Neural Networks
using Algebraic Topology [9.537910170141467]
特徴埋め込み空間のトポロジがベッチ数を介してよく訓練されたディープニューラルネットワーク(DNN)の層を通過するとき、どのように変化するかを検討する。
深度が増加するにつれて、トポロジカルに複雑なデータセットが単純なデータセットに変換され、ベッチ数はその最小値に達することが示される。
論文 参考訳(メタデータ) (2023-11-08T10:45:12Z) - Self-supervised Semantic Segmentation: Consistency over Transformation [3.485615723221064]
Inception Large Kernel Attention (I-LKA) モジュールをベースとしたロバストなフレームワークを統合した新しい自己教師型アルゴリズム textbfS$3$-Net を提案する。
我々は、変形可能な畳み込みを積分成分として利用し、優れた物体境界定義のための歪み変形を効果的に捕捉し、デライン化する。
皮膚病変および肺臓器の分節タスクに関する実験結果から,SOTA法と比較して,本手法の優れた性能を示した。
論文 参考訳(メタデータ) (2023-08-31T21:28:46Z) - Learning Multiscale Consistency for Self-supervised Electron Microscopy
Instance Segmentation [48.267001230607306]
本稿では,EMボリュームのマルチスケール一貫性を高める事前学習フレームワークを提案する。
当社のアプローチでは,強力なデータ拡張と弱いデータ拡張を統合することで,Siameseネットワークアーキテクチャを活用している。
効果的にボクセルと機能の一貫性をキャプチャし、EM分析のための転送可能な表現を学習する。
論文 参考訳(メタデータ) (2023-08-19T05:49:13Z) - Dynamic Snake Convolution based on Topological Geometric Constraints for
Tubular Structure Segmentation [12.081234339680456]
我々はこの知識を用いてDSCNetを誘導し、特徴抽出、特徴融合、損失制約という3つの段階の認識を同時に強化する。
2Dおよび3Dデータセットの実験により、DSCNetは管状構造セグメンテーションタスクにおいて、いくつかの手法と比較して精度と連続性が高いことを示した。
論文 参考訳(メタデータ) (2023-07-17T10:55:58Z) - Geometric Deep Learning for Structure-Based Drug Design: A Survey [83.87489798671155]
構造に基づく薬物設計(SBDD)は、タンパク質の3次元幾何学を利用して、潜在的な薬物候補を特定する。
近年の幾何学的深層学習の進歩は、3次元幾何学的データを効果的に統合・処理し、この分野を前進させてきた。
論文 参考訳(メタデータ) (2023-06-20T14:21:58Z) - SIM-Trans: Structure Information Modeling Transformer for Fine-grained
Visual Categorization [59.732036564862796]
本稿では,オブジェクト構造情報を変換器に組み込んだSIM-Trans(Structure Information Modeling Transformer)を提案する。
提案した2つのモジュールは軽量化されており、任意のトランスフォーマーネットワークにプラグインでき、エンドツーエンドで容易に訓練できる。
実験と解析により,提案したSIM-Transが細粒度視覚分類ベンチマークの最先端性能を達成することを示した。
論文 参考訳(メタデータ) (2022-08-31T03:00:07Z) - Learning Connectivity of Neural Networks from a Topological Perspective [80.35103711638548]
本稿では,ネットワークを解析のための完全なグラフに表現するためのトポロジ的視点を提案する。
接続の規模を反映したエッジに学習可能なパラメータを割り当てることにより、学習プロセスを異なる方法で行うことができる。
この学習プロセスは既存のネットワークと互換性があり、より大きな検索空間と異なるタスクへの適応性を持っている。
論文 参考訳(メタデータ) (2020-08-19T04:53:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。