Producing Energy Eigenstates of the ${\rm H}_{2}$ Molecule by Classically Emulated Quantum Simulation
- URL: http://arxiv.org/abs/2412.20672v1
- Date: Mon, 30 Dec 2024 02:52:01 GMT
- Title: Producing Energy Eigenstates of the ${\rm H}_{2}$ Molecule by Classically Emulated Quantum Simulation
- Authors: Kazuto Oshima,
- Abstract summary: We produce an energy eigenstate of the $rm H_2$ molecule from a superposition of energy eigenstates by classically emulated quantum simulation.
We use a Hamiltonian of the $rm H_2$ molecule represented by Pauli matrices and ancillad qubits.
- Score: 0.0
- License:
- Abstract: We produce an energy eigenstate of the ${\rm H}_{2}$ molecule from a superposition of energy eigenstates by classically emulated quantum simulation. We use a Hamiltonian of the ${\rm H}_{2}$ molecule represented by Pauli matrices and concatenated ancilla qubits. Starting from an adequate initial state of physical qubits, we produce a corresponding energy eigenstate by twirling operations, that are time evolutions by the Hamiltonian controlled by the ancilla qubits.
Related papers
- Simulating NMR Spectra with a Quantum Computer [49.1574468325115]
This paper provides a formalization of the complete procedure of the simulation of a spin system's NMR spectrum.
We also explain how to diagonalize the Hamiltonian matrix with a quantum computer, thus enhancing the overall process's performance.
arXiv Detail & Related papers (2024-10-28T08:43:40Z) - Twirling Operations to Produce Energy Eigenstates of a Hamiltonian by
Classically Emulated Quantum Simulation [0.0]
We propose a simple procedure to produce energy eigenstates of a Hamiltonian with discrete eigenvalues.
We use ancilla qubits and quantum entanglement to separate an energy eigenstate from the other energy eigenstates.
arXiv Detail & Related papers (2023-09-10T04:10:36Z) - On The Study Of Partial Qubit Hamiltonian For Efficient Molecular
Simulation Using Variational Quantum Eigensolvers [0.0]
We present a new approach for extracting information from the partial qubit Hamiltonian of simple molecules to design more efficient variational quantum eigensolvers.
The results of this study have the potential to demonstrate the potential advancement in the field of quantum computing and its implementation in quantum chemistry.
arXiv Detail & Related papers (2023-08-24T03:25:05Z) - Floating block method for quantum Monte Carlo simulations [0.0]
We introduce an algorithm called the floating block method, which solves the problem by performing Euclidean time evolution with two different Hamiltonians and interleaving the corresponding time blocks.
We use the floating block method and nuclear lattice simulations to build eigenvector continuation emulators for energies of $4$He, $8$Be, $12$C, and $16$O nuclei.
arXiv Detail & Related papers (2023-06-20T10:35:27Z) - Studying chirality imbalance with quantum algorithms [62.997667081978825]
We employ the (1+1) dimensional Nambu-Jona-Lasinio (NJL) model to study the chiral phase structure and chirality charge density of strongly interacting matter.
By performing the Quantum imaginary time evolution (QITE) algorithm, we simulate the (1+1) dimensional NJL model on the lattice at various temperature $T$ and chemical potentials $mu$, $mu_5$.
arXiv Detail & Related papers (2022-10-06T17:12:33Z) - Algebraic Compression of Quantum Circuits for Hamiltonian Evolution [52.77024349608834]
Unitary evolution under a time dependent Hamiltonian is a key component of simulation on quantum hardware.
We present an algorithm that compresses the Trotter steps into a single block of quantum gates.
This results in a fixed depth time evolution for certain classes of Hamiltonians.
arXiv Detail & Related papers (2021-08-06T19:38:01Z) - Computing molecular excited states on a D-Wave quantum annealer [52.5289706853773]
We demonstrate the use of a D-Wave quantum annealer for the calculation of excited electronic states of molecular systems.
These simulations play an important role in a number of areas, such as photovoltaics, semiconductor technology and nanoscience.
arXiv Detail & Related papers (2021-07-01T01:02:17Z) - Engineering analog quantum chemistry Hamiltonians using cold atoms in
optical lattices [69.50862982117127]
We benchmark the working conditions of the numerically analog simulator and find less demanding experimental setups.
We also provide a deeper understanding of the errors of the simulation appearing due to discretization and finite size effects.
arXiv Detail & Related papers (2020-11-28T11:23:06Z) - Dynamical Self-energy Mapping (DSEM) for quantum computing [0.0]
For noisy intermediate-scale quantum (NISQ) devices only a moderate number of qubits with a limited coherence is available.
We present how to bypass this challenge in practical molecular chemistry simulations on NISQ devices by employing a classical-quantum hybrid algorithm.
arXiv Detail & Related papers (2020-10-12T04:12:21Z) - Quantum Simulation of 2D Quantum Chemistry in Optical Lattices [59.89454513692418]
We propose an analog simulator for discrete 2D quantum chemistry models based on cold atoms in optical lattices.
We first analyze how to simulate simple models, like the discrete versions of H and H$+$, using a single fermionic atom.
We then show that a single bosonic atom can mediate an effective Coulomb repulsion between two fermions, leading to the analog of molecular Hydrogen in two dimensions.
arXiv Detail & Related papers (2020-02-21T16:00:36Z) - Time-resolved tomography of a driven adiabatic quantum simulation [0.0]
Adiabatic quantum simulation is demonstrated by directly implementing a controllable and smoothly varying Hamiltonian in the rotating frame of two superconducting qubits.
Errors in the obtained energy values induced by finite $T$ and $T$ times of the qubits are mitigated by extrapolation to short protocol times.
arXiv Detail & Related papers (2020-01-15T11:19:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.