論文の概要: ChartAdapter: Large Vision-Language Model for Chart Summarization
- arxiv url: http://arxiv.org/abs/2412.20715v1
- Date: Mon, 30 Dec 2024 05:07:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-31 16:05:35.822198
- Title: ChartAdapter: Large Vision-Language Model for Chart Summarization
- Title(参考訳): ChartAdapter: チャート要約のための大規模ビジョンランゲージモデル
- Authors: Peixin Xu, Yujuan Ding, Wenqi Fan,
- Abstract要約: ChartAdapterは、チャートとテキスト要約の間のギャップを埋めるために設計された軽量トランスフォーマーモジュールである。
LLMとChartAdapterを統合することで、エンドツーエンドのトレーニングと効率的なチャート要約を可能にします。
- 参考スコア(独自算出の注目度): 13.499376163294816
- License:
- Abstract: Chart summarization, which focuses on extracting key information from charts and interpreting it in natural language, is crucial for generating and delivering insights through effective and accessible data analysis. Traditional methods for chart understanding and summarization often rely on multi-stage pipelines, which may produce suboptimal semantic alignment between visual and textual information. In comparison, recently developed LLM-based methods are more dependent on the capability of foundation images or languages, while ignoring the characteristics of chart data and its relevant challenges. To address these limitations, we propose ChartAdapter, a novel lightweight transformer module designed to bridge the gap between charts and textual summaries. ChartAdapter employs learnable query vectors to extract implicit semantics from chart data and incorporates a cross-modal alignment projector to enhance vision-to-language generative learning. By integrating ChartAdapter with an LLM, we enable end-to-end training and efficient chart summarization. To further enhance the training, we introduce a three-stage hierarchical training procedure and develop a large-scale dataset specifically curated for chart summarization, comprising 190,618 samples. Experimental results on the standard Chart-to-Text testing set demonstrate that our approach significantly outperforms existing methods, including state-of-the-art models, in generating high-quality chart summaries. Ablation studies further validate the effectiveness of key components in ChartAdapter. This work highlights the potential of tailored LLM-based approaches to advance chart understanding and sets a strong foundation for future research in this area.
- Abstract(参考訳): チャートから重要な情報を抽出し、それを自然言語で解釈することに焦点を当てたチャート要約は、効果的でアクセスしやすいデータ分析を通じて洞察を生成し、提供するために不可欠である。
チャート理解と要約の伝統的な手法は、しばしば多段階パイプラインに依存しており、視覚情報とテキスト情報の間に最適なセマンティックアライメントをもたらす可能性がある。
一方,最近開発されたLCM法は基礎画像や言語の性能に依存し,グラフデータの特徴や関連する課題を無視している。
このような制限に対処するため,グラフとテキストの要約のギャップを埋めるために設計された,新しい軽量トランスフォーマーモジュールであるChartAdapterを提案する。
ChartAdapterは学習可能なクエリベクトルを使用して、チャートデータから暗黙的なセマンティクスを抽出し、モーダルなアライメントプロジェクタを組み込んで、視覚から言語への生成学習を強化する。
LLMとChartAdapterを統合することで、エンドツーエンドのトレーニングと効率的なチャート要約を可能にします。
さらに,3段階の階層的トレーニング手法を導入し,グラフ要約に特化して計算した大規模データセットを190,618個のサンプルから作成する。
標準のChart-to-Textテストセットの実験結果から,我々の手法は,高品質なチャート要約を生成する上で,最先端のモデルを含む既存の手法を著しく上回っていることが示された。
アブレーション研究はChartAdapterの主要なコンポーネントの有効性をさらに検証している。
この研究は、チャート理解を前進させるLLMベースのアプローチの可能性を浮き彫りにし、この分野における今後の研究の強力な基盤となる。
関連論文リスト
- On Pre-training of Multimodal Language Models Customized for Chart Understanding [83.99377088129282]
本稿では,MLLMのチャート理解を改善するために必要な学習過程について考察する。
詳細なチャート理解に適したMLLMであるCHOPINLLMを紹介する。
論文 参考訳(メタデータ) (2024-07-19T17:58:36Z) - ChartThinker: A Contextual Chain-of-Thought Approach to Optimized Chart Summarization [32.19963543411396]
本研究は,各チャートに包括的チャートキャプチャペアと微調整命令の大規模データセットを構築した。
本稿では,思考の連鎖に基づいて深い分析を合成する,革新的なチャート要約手法であるChartThinkerを提案する。
キュレートされたデータセットに基づいて、トレーニングされたモデルは、チャートの要約タスクにおいて、常に優れたパフォーマンスを示します。
論文 参考訳(メタデータ) (2024-03-17T14:49:09Z) - ChartAssisstant: A Universal Chart Multimodal Language Model via
Chart-to-Table Pre-training and Multitask Instruction Tuning [54.89249749894061]
ChartAssistantは、ユニバーサルチャートの理解と推論のためのビジョン言語モデルである。
2段階のトレーニングプロセスを経て、チャートとテキストの調整のために、チャートからテーブルへのパースを事前トレーニングする。
実験により, 最先端UniChart法とChartllama法に比較して, 顕著な性能向上が得られた。
論文 参考訳(メタデータ) (2024-01-04T17:51:48Z) - ChartLlama: A Multimodal LLM for Chart Understanding and Generation [70.1393163657813]
GPT-4を利用した高品質な命令チューニングデータセットを作成する。
次に、生成したデータセットを使ってトレーニングしたマルチモーダルな大規模言語モデルであるChartLlamaを紹介します。
論文 参考訳(メタデータ) (2023-11-27T15:20:23Z) - StructChart: On the Schema, Metric, and Augmentation for Visual Chart Understanding [54.45681512355684]
現在のチャート関連タスクは、ビジュアルチャートから情報を抽出するチャート認識か、抽出されたデータに基づいてチャート推論にフォーカスする。
我々はStructChartを紹介した。StructChartはStruct Triplet Representations(STR)を利用して、統一的でラベル効率のよいアプローチを実現する新しいフレームワークである。
論文 参考訳(メタデータ) (2023-09-20T12:51:13Z) - Enhanced Chart Understanding in Vision and Language Task via Cross-modal
Pre-training on Plot Table Pairs [71.55796212450055]
本稿では、プロットテーブルペア上でのクロスモーダル事前学習を通じて、チャート画像からテーブル情報を解釈する方法を学ぶV+LモデルであるChartT5を紹介する。
具体的には,MHP(Masked Header Prediction)とMVP(Masked Value Prediction)の2つの新しい事前学習目標を提案する。
論文 参考訳(メタデータ) (2023-05-29T22:29:03Z) - UniChart: A Universal Vision-language Pretrained Model for Chart
Comprehension and Reasoning [29.947053208614246]
We present UniChart, a pretrained model for chart comprehension and reasoning。
UniChartは、チャートの関連するテキスト、データ、および視覚要素をエンコードし、その後、チャートグラウンドのテキストデコーダを使用して、自然言語で期待される出力を生成する。
i) チャートから視覚要素(バーや線など)とデータを抽出する低レベルタスク、(ii) チャート理解と推論のスキルを得るための高レベルタスクなどである。
論文 参考訳(メタデータ) (2023-05-24T06:11:17Z) - ChartReader: A Unified Framework for Chart Derendering and Comprehension
without Heuristic Rules [89.75395046894809]
ChartReaderは、チャートのデレンダリングと理解タスクをシームレスに統合する統合フレームワークです。
提案手法には,トランスフォーマーに基づくチャートコンポーネント検出モジュールと,チャートからXまでのタスクに対する事前学習型視覚言語モデルが組み込まれている。
提案するフレームワークは,チャート解析に係わる作業を大幅に削減し,ユニバーサルチャート理解モデルへの一歩を踏み出すことができる。
論文 参考訳(メタデータ) (2023-04-05T00:25:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。