4D Gaussian Splatting: Modeling Dynamic Scenes with Native 4D Primitives
- URL: http://arxiv.org/abs/2412.20720v2
- Date: Tue, 05 Aug 2025 21:54:39 GMT
- Title: 4D Gaussian Splatting: Modeling Dynamic Scenes with Native 4D Primitives
- Authors: Zeyu Yang, Zijie Pan, Xiatian Zhu, Li Zhang, Jianfeng Feng, Yu-Gang Jiang, Philip H. S. Torr,
- Abstract summary: Dynamic 3D scene representation and novel view synthesis are crucial for enabling AR/VR and metaverse applications.<n>We reformulate the reconstruction of a time-varying 3D scene as approximating its underlying 4D volume.<n>We derive several compact variants that effectively reduce the memory footprint to address its storage bottleneck.
- Score: 115.67081491747943
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Dynamic 3D scene representation and novel view synthesis are crucial for enabling immersive experiences required by AR/VR and metaverse applications. It is a challenging task due to the complexity of unconstrained real-world scenes and their temporal dynamics. In this paper, we reformulate the reconstruction of a time-varying 3D scene as approximating its underlying spatiotemporal 4D volume by optimizing a collection of native 4D primitives, i.e., 4D Gaussians, with explicit geometry and appearance modeling. Equipped with a tailored rendering pipeline, our representation can be end-to-end optimized using only photometric supervision while free viewpoint viewing at interactive frame rate, making it suitable for representing real world scene with complex dynamic. This approach has been the first solution to achieve real-time rendering of high-resolution, photorealistic novel views for complex dynamic scenes. To facilitate real-world applications, we derive several compact variants that effectively reduce the memory footprint to address its storage bottleneck. Extensive experiments validate the superiority of 4DGS in terms of visual quality and efficiency across a range of dynamic scene-related tasks (e.g., novel view synthesis, 4D generation, scene understanding) and scenarios (e.g., single object, indoor scenes, driving environments, synthetic and real data).
Related papers
- DGS-LRM: Real-Time Deformable 3D Gaussian Reconstruction From Monocular Videos [52.46386528202226]
We introduce the Deformable Gaussian Splats Large Reconstruction Model (DGS-LRM)<n>It is the first feed-forward method predicting deformable 3D Gaussian splats from a monocular posed video of any dynamic scene.<n>It achieves performance on par with state-of-the-art monocular video 3D tracking methods.
arXiv Detail & Related papers (2025-06-11T17:59:58Z) - Free4D: Tuning-free 4D Scene Generation with Spatial-Temporal Consistency [49.875459658889355]
Free4D is a tuning-free framework for 4D scene generation from a single image.
Our key insight is to distill pre-trained foundation models for consistent 4D scene representation.
The resulting 4D representation enables real-time, controllable rendering.
arXiv Detail & Related papers (2025-03-26T17:59:44Z) - CoDa-4DGS: Dynamic Gaussian Splatting with Context and Deformation Awareness for Autonomous Driving [12.006435326659526]
We introduce a novel 4D Gaussian Splatting (4DGS) approach to improve dynamic scene rendering.
Specifically, we employ a 2D semantic segmentation foundation model to self-supervise the 4D semantic features of Gaussians.
By aggregating and encoding both semantic and temporal deformation features, each Gaussian is equipped with cues for potential deformation compensation.
arXiv Detail & Related papers (2025-03-09T19:58:51Z) - Diffusion4D: Fast Spatial-temporal Consistent 4D Generation via Video Diffusion Models [116.31344506738816]
We present a novel framework, textbfDiffusion4D, for efficient and scalable 4D content generation.
We develop a 4D-aware video diffusion model capable of synthesizing orbital views of dynamic 3D assets.
Our method surpasses prior state-of-the-art techniques in terms of generation efficiency and 4D geometry consistency.
arXiv Detail & Related papers (2024-05-26T17:47:34Z) - 4D-Rotor Gaussian Splatting: Towards Efficient Novel View Synthesis for Dynamic Scenes [33.14021987166436]
We introduce 4DRotorGS, a novel method that represents dynamic scenes with anisotropic 4D XYZT Gaussians.
As an explicit spatial-temporal representation, 4DRotorGS demonstrates powerful capabilities for modeling complicated dynamics and fine details.
We further implement our temporal slicing and acceleration framework, achieving real-time rendering speeds of up to 277 FPS on an 3090 GPU and 583 FPS on a 4090 GPU.
arXiv Detail & Related papers (2024-02-05T18:59:04Z) - Align Your Gaussians: Text-to-4D with Dynamic 3D Gaussians and Composed
Diffusion Models [94.07744207257653]
We focus on the underexplored text-to-4D setting and synthesize dynamic, animated 3D objects.
We combine text-to-image, text-to-video, and 3D-aware multiview diffusion models to provide feedback during 4D object optimization.
arXiv Detail & Related papers (2023-12-21T11:41:02Z) - Real-time Photorealistic Dynamic Scene Representation and Rendering with
4D Gaussian Splatting [8.078460597825142]
Reconstructing dynamic 3D scenes from 2D images and generating diverse views over time is challenging due to scene complexity and temporal dynamics.
We propose to approximate the underlying-temporal rendering volume of a dynamic scene by optimizing a collection of 4D primitives, with explicit geometry and appearance modeling.
Our model is conceptually simple, consisting of a 4D Gaussian parameterized by anisotropic ellipses that can rotate arbitrarily in space and time, as well as view-dependent and time-evolved appearance represented by the coefficient of 4D spherindrical harmonics.
arXiv Detail & Related papers (2023-10-16T17:57:43Z) - Im4D: High-Fidelity and Real-Time Novel View Synthesis for Dynamic
Scenes [69.52540205439989]
We introduce Im4D, a hybrid representation that consists of a grid-based geometry representation and a multi-view image-based appearance representation.
We represent the scene appearance by the original multi-view videos and a network that learns to predict the color of a 3D point from image features.
We show that Im4D state-of-the-art performance in rendering quality and can be trained efficiently, while realizing real-time rendering with a speed of 79.8 FPS for 512x512 images.
arXiv Detail & Related papers (2023-10-12T17:59:57Z) - 4D Gaussian Splatting for Real-Time Dynamic Scene Rendering [103.32717396287751]
We propose 4D Gaussian Splatting (4D-GS) as a holistic representation for dynamic scenes.
A neuralvoxel encoding algorithm inspired by HexPlane is proposed to efficiently build features from 4D neural voxels.
Our 4D-GS method achieves real-time rendering under high resolutions, 82 FPS at an 800$times$800 resolution on an 3090 GPU.
arXiv Detail & Related papers (2023-10-12T17:21:41Z) - Dynamic 3D Gaussians: Tracking by Persistent Dynamic View Synthesis [58.5779956899918]
We present a method that simultaneously addresses the tasks of dynamic scene novel-view synthesis and six degree-of-freedom (6-DOF) tracking of all dense scene elements.
We follow an analysis-by-synthesis framework, inspired by recent work that models scenes as a collection of 3D Gaussians.
We demonstrate a large number of downstream applications enabled by our representation, including first-person view synthesis, dynamic compositional scene synthesis, and 4D video editing.
arXiv Detail & Related papers (2023-08-18T17:59:21Z) - NeRFPlayer: A Streamable Dynamic Scene Representation with Decomposed
Neural Radiance Fields [99.57774680640581]
We present an efficient framework capable of fast reconstruction, compact modeling, and streamable rendering.
We propose to decompose the 4D space according to temporal characteristics. Points in the 4D space are associated with probabilities belonging to three categories: static, deforming, and new areas.
arXiv Detail & Related papers (2022-10-28T07:11:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.