4D-Rotor Gaussian Splatting: Towards Efficient Novel View Synthesis for Dynamic Scenes
- URL: http://arxiv.org/abs/2402.03307v3
- Date: Tue, 2 Jul 2024 08:33:07 GMT
- Title: 4D-Rotor Gaussian Splatting: Towards Efficient Novel View Synthesis for Dynamic Scenes
- Authors: Yuanxing Duan, Fangyin Wei, Qiyu Dai, Yuhang He, Wenzheng Chen, Baoquan Chen,
- Abstract summary: We introduce 4DRotorGS, a novel method that represents dynamic scenes with anisotropic 4D XYZT Gaussians.
As an explicit spatial-temporal representation, 4DRotorGS demonstrates powerful capabilities for modeling complicated dynamics and fine details.
We further implement our temporal slicing and acceleration framework, achieving real-time rendering speeds of up to 277 FPS on an 3090 GPU and 583 FPS on a 4090 GPU.
- Score: 33.14021987166436
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider the problem of novel-view synthesis (NVS) for dynamic scenes. Recent neural approaches have accomplished exceptional NVS results for static 3D scenes, but extensions to 4D time-varying scenes remain non-trivial. Prior efforts often encode dynamics by learning a canonical space plus implicit or explicit deformation fields, which struggle in challenging scenarios like sudden movements or generating high-fidelity renderings. In this paper, we introduce 4D Gaussian Splatting (4DRotorGS), a novel method that represents dynamic scenes with anisotropic 4D XYZT Gaussians, inspired by the success of 3D Gaussian Splatting in static scenes. We model dynamics at each timestamp by temporally slicing the 4D Gaussians, which naturally compose dynamic 3D Gaussians and can be seamlessly projected into images. As an explicit spatial-temporal representation, 4DRotorGS demonstrates powerful capabilities for modeling complicated dynamics and fine details--especially for scenes with abrupt motions. We further implement our temporal slicing and splatting techniques in a highly optimized CUDA acceleration framework, achieving real-time inference rendering speeds of up to 277 FPS on an RTX 3090 GPU and 583 FPS on an RTX 4090 GPU. Rigorous evaluations on scenes with diverse motions showcase the superior efficiency and effectiveness of 4DRotorGS, which consistently outperforms existing methods both quantitatively and qualitatively.
Related papers
- Fully Explicit Dynamic Gaussian Splatting [22.889981393105554]
3D Gaussian Splatting has shown fast and high-quality rendering results in static scenes by leveraging dense 3D prior and explicit representations.
We introduce a progressive training scheme and a point-backtracking technique that improves Ex4DGS's convergence.
Comprehensive experiments on various scenes demonstrate the state-of-the-art rendering quality from our method, achieving fast rendering of 62 fps on a single 2080Ti GPU.
arXiv Detail & Related papers (2024-10-21T04:25:43Z) - S4D: Streaming 4D Real-World Reconstruction with Gaussians and 3D Control Points [30.46796069720543]
We introduce a novel approach for streaming 4D real-world reconstruction utilizing discrete 3D control points.
This method physically models local rays and establishes a motion-decoupling coordinate system.
By effectively merging traditional graphics with learnable pipelines, it provides a robust and efficient local 6-degrees-of-freedom (6 DoF) motion representation.
arXiv Detail & Related papers (2024-08-23T12:51:49Z) - $\textit{S}^3$Gaussian: Self-Supervised Street Gaussians for Autonomous Driving [82.82048452755394]
Photorealistic 3D reconstruction of street scenes is a critical technique for developing real-world simulators for autonomous driving.
Most existing street 3DGS methods require tracked 3D vehicle bounding boxes to decompose the static and dynamic elements.
We propose a self-supervised street Gaussian ($textitS3$Gaussian) method to decompose dynamic and static elements from 4D consistency.
arXiv Detail & Related papers (2024-05-30T17:57:08Z) - SC4D: Sparse-Controlled Video-to-4D Generation and Motion Transfer [57.506654943449796]
We propose an efficient, sparse-controlled video-to-4D framework named SC4D that decouples motion and appearance.
Our method surpasses existing methods in both quality and efficiency.
We devise a novel application that seamlessly transfers motion onto a diverse array of 4D entities.
arXiv Detail & Related papers (2024-04-04T18:05:18Z) - DreamGaussian4D: Generative 4D Gaussian Splatting [56.49043443452339]
We introduce DreamGaussian4D (DG4D), an efficient 4D generation framework that builds on Gaussian Splatting (GS)
Our key insight is that combining explicit modeling of spatial transformations with static GS makes an efficient and powerful representation for 4D generation.
Video generation methods have the potential to offer valuable spatial-temporal priors, enhancing the high-quality 4D generation.
arXiv Detail & Related papers (2023-12-28T17:16:44Z) - Spacetime Gaussian Feature Splatting for Real-Time Dynamic View Synthesis [28.455719771979876]
We propose Spacetime Gaussian Feature Splatting as a novel dynamic scene representation.
Our method achieves state-of-the-art rendering quality and speed, while retaining compact storage.
arXiv Detail & Related papers (2023-12-28T04:14:55Z) - Align Your Gaussians: Text-to-4D with Dynamic 3D Gaussians and Composed
Diffusion Models [94.07744207257653]
We focus on the underexplored text-to-4D setting and synthesize dynamic, animated 3D objects.
We combine text-to-image, text-to-video, and 3D-aware multiview diffusion models to provide feedback during 4D object optimization.
arXiv Detail & Related papers (2023-12-21T11:41:02Z) - 4D Gaussian Splatting for Real-Time Dynamic Scene Rendering [103.32717396287751]
We propose 4D Gaussian Splatting (4D-GS) as a holistic representation for dynamic scenes.
A neuralvoxel encoding algorithm inspired by HexPlane is proposed to efficiently build features from 4D neural voxels.
Our 4D-GS method achieves real-time rendering under high resolutions, 82 FPS at an 800$times$800 resolution on an 3090 GPU.
arXiv Detail & Related papers (2023-10-12T17:21:41Z) - Deformable 3D Gaussians for High-Fidelity Monocular Dynamic Scene
Reconstruction [29.83056271799794]
Implicit neural representation has paved the way for new approaches to dynamic scene reconstruction and rendering.
We propose a deformable 3D Gaussians Splatting method that reconstructs scenes using 3D Gaussians and learns them in canonical space.
Through a differential Gaussianizer, the deformable 3D Gaussians not only achieve higher rendering quality but also real-time rendering speed.
arXiv Detail & Related papers (2023-09-22T16:04:02Z) - Dynamic 3D Gaussians: Tracking by Persistent Dynamic View Synthesis [58.5779956899918]
We present a method that simultaneously addresses the tasks of dynamic scene novel-view synthesis and six degree-of-freedom (6-DOF) tracking of all dense scene elements.
We follow an analysis-by-synthesis framework, inspired by recent work that models scenes as a collection of 3D Gaussians.
We demonstrate a large number of downstream applications enabled by our representation, including first-person view synthesis, dynamic compositional scene synthesis, and 4D video editing.
arXiv Detail & Related papers (2023-08-18T17:59:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.