Holistic Construction Automation with Modular Robots: From High-Level Task Specification to Execution
- URL: http://arxiv.org/abs/2412.20867v1
- Date: Mon, 30 Dec 2024 11:11:13 GMT
- Title: Holistic Construction Automation with Modular Robots: From High-Level Task Specification to Execution
- Authors: Jonathan Külz, Michael Terzer, Marco Magri, Andrea Giusti, Matthias Althoff,
- Abstract summary: In situ robotic automation in construction is challenging due to constantly changing environments, a shortage of robotic experts, and a lack of standardized frameworks bridging robotics and construction practices.
This work proposes a holistic framework for construction task specification, optimization of robot morphology, and mission execution using a mobile modular reconfigurable robot.
- Score: 7.012962572096341
- License:
- Abstract: In situ robotic automation in construction is challenging due to constantly changing environments, a shortage of robotic experts, and a lack of standardized frameworks bridging robotics and construction practices. This work proposes a holistic framework for construction task specification, optimization of robot morphology, and mission execution using a mobile modular reconfigurable robot. Users can specify and monitor the desired robot behavior through a graphical interface. Our framework identifies an optimized robot morphology and enables automatic real-world execution by integrating Building Information Modelling (BIM). By leveraging modular robot components, we ensure seamless and fast adaption to the specific demands of the construction task. Experimental validation demonstrates that our approach robustly enables the autonomous execution of robotic drilling.
Related papers
- On the Exploration of LM-Based Soft Modular Robot Design [26.847859137653487]
Large language models (LLMs) have demonstrated promising capabilities in modeling real-world knowledge.
In this paper, we explore the potential of using LLMs to aid in the design of soft modular robots.
Our model performs well in evaluations for designing soft modular robots with uni- and bi-directional and stair-descending capabilities.
arXiv Detail & Related papers (2024-11-01T04:03:05Z) - Body Transformer: Leveraging Robot Embodiment for Policy Learning [51.531793239586165]
Body Transformer (BoT) is an architecture that leverages the robot embodiment by providing an inductive bias that guides the learning process.
We represent the robot body as a graph of sensors and actuators, and rely on masked attention to pool information throughout the architecture.
The resulting architecture outperforms the vanilla transformer, as well as the classical multilayer perceptron, in terms of task completion, scaling properties, and computational efficiency.
arXiv Detail & Related papers (2024-08-12T17:31:28Z) - Unifying 3D Representation and Control of Diverse Robots with a Single Camera [48.279199537720714]
We introduce Neural Jacobian Fields, an architecture that autonomously learns to model and control robots from vision alone.
Our approach achieves accurate closed-loop control and recovers the causal dynamic structure of each robot.
arXiv Detail & Related papers (2024-07-11T17:55:49Z) - RoboCodeX: Multimodal Code Generation for Robotic Behavior Synthesis [102.1876259853457]
We propose a tree-structured multimodal code generation framework for generalized robotic behavior synthesis, termed RoboCodeX.
RoboCodeX decomposes high-level human instructions into multiple object-centric manipulation units consisting of physical preferences such as affordance and safety constraints.
To further enhance the capability to map conceptual and perceptual understanding into control commands, a specialized multimodal reasoning dataset is collected for pre-training and an iterative self-updating methodology is introduced for supervised fine-tuning.
arXiv Detail & Related papers (2024-02-25T15:31:43Z) - RoboScript: Code Generation for Free-Form Manipulation Tasks across Real
and Simulation [77.41969287400977]
This paper presents textbfRobotScript, a platform for a deployable robot manipulation pipeline powered by code generation.
We also present a benchmark for a code generation benchmark for robot manipulation tasks in free-form natural language.
We demonstrate the adaptability of our code generation framework across multiple robot embodiments, including the Franka and UR5 robot arms.
arXiv Detail & Related papers (2024-02-22T15:12:00Z) - RoboGen: Towards Unleashing Infinite Data for Automated Robot Learning via Generative Simulation [68.70755196744533]
RoboGen is a generative robotic agent that automatically learns diverse robotic skills at scale via generative simulation.
Our work attempts to extract the extensive and versatile knowledge embedded in large-scale models and transfer them to the field of robotics.
arXiv Detail & Related papers (2023-11-02T17:59:21Z) - Optimizing Modular Robot Composition: A Lexicographic Genetic Algorithm
Approach [9.471665570104802]
The morphology, i.e., the form and structure of a robot, significantly impacts the primary performance metrics acquisition cost, cycle time, and energy efficiency.
Previous approaches either lack adequate exploration of the design space or the possibility to adapt to complex tasks.
We propose combining a genetic algorithm with a lexicographic evaluation of solution candidates to overcome this problem.
arXiv Detail & Related papers (2023-09-15T13:50:21Z) - Robot-Enabled Construction Assembly with Automated Sequence Planning
based on ChatGPT: RoboGPT [3.4107729935810944]
This paper introduces RoboGPT, a novel system that leverages the advanced reasoning capabilities of ChatGPT.
The proposed system adapts ChatGPT for construction sequence planning and demonstrate its feasibility and effectiveness.
The results show that RoboGPT-driven robots can handle complex construction operations and adapt to changes on the fly.
arXiv Detail & Related papers (2023-04-21T15:04:41Z) - ProgPrompt: Generating Situated Robot Task Plans using Large Language
Models [68.57918965060787]
Large language models (LLMs) can be used to score potential next actions during task planning.
We present a programmatic LLM prompt structure that enables plan generation functional across situated environments.
arXiv Detail & Related papers (2022-09-22T20:29:49Z) - Behavior coordination for self-adaptive robots using constraint-based
configuration [0.0]
This paper presents an original algorithm to dynamically configure the control architecture of self-adaptive robots.
The algorithm uses a constraint-based configuration approach to decide which basic robot behaviors should be activated in response to both reactive and deliberative events.
The solution has been implemented as a software development tool called Behavior Coordinator CBC, which is based on ROS and open source.
arXiv Detail & Related papers (2021-03-24T12:09:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.