論文の概要: LINK: Adaptive Modality Interaction for Audio-Visual Video Parsing
- arxiv url: http://arxiv.org/abs/2412.20872v1
- Date: Mon, 30 Dec 2024 11:23:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-31 16:06:03.725801
- Title: LINK: Adaptive Modality Interaction for Audio-Visual Video Parsing
- Title(参考訳): LINK:オーディオ・ビジュアル・ビデオ・パーシングのための適応的モダリティインタラクション
- Authors: Langyu Wang, Bingke Zhu, Yingying Chen, Jinqiao Wang,
- Abstract要約: 非整合知識のための学習インタラクション手法(リンク)を提案する。
リンクは、イベント予測中に入力を動的に調整することで、異なるモダリティのコントリビューションを均衡させる。
疑似ラベルの意味情報を事前知識として活用し、他のモーダルからノイズを緩和する。
- 参考スコア(独自算出の注目度): 26.2873961811614
- License:
- Abstract: Audio-visual video parsing focuses on classifying videos through weak labels while identifying events as either visible, audible, or both, alongside their respective temporal boundaries. Many methods ignore that different modalities often lack alignment, thereby introducing extra noise during modal interaction. In this work, we introduce a Learning Interaction method for Non-aligned Knowledge (LINK), designed to equilibrate the contributions of distinct modalities by dynamically adjusting their input during event prediction. Additionally, we leverage the semantic information of pseudo-labels as a priori knowledge to mitigate noise from other modalities. Our experimental findings demonstrate that our model outperforms existing methods on the LLP dataset.
- Abstract(参考訳): 音声-視覚的ビデオ解析は、弱いラベルによるビデオの分類に焦点を当て、それぞれの時間境界に沿って、イベントを可視性、可聴性、またはその両方として識別する。
多くの手法は、異なるモダリティはアライメントを欠くことが多く、それによってモーダル相互作用の間に余分なノイズが生じることを無視する。
本研究では、イベント予測中に入力を動的に調整することで、異なるモダリティの寄与を平衡化するための非整合知識学習対話法(LINK)を提案する。
さらに、擬似ラベルの意味情報を優先知識として活用し、他のモーダルからノイズを緩和する。
実験結果から,LLPデータセットの既存手法よりも優れた性能を示した。
関連論文リスト
- Towards Open-Vocabulary Audio-Visual Event Localization [59.23161248808759]
本稿では,オープン語彙音声・視覚イベントのローカライズ問題を紹介する。
この問題は、音声・視覚イベントのローカライズと、推測時に見つからないデータの両方の明確なカテゴリの予測を必要とする。
OV-AVEBenchデータセットを提案する。
論文 参考訳(メタデータ) (2024-11-18T04:35:20Z) - CACE-Net: Co-guidance Attention and Contrastive Enhancement for Effective Audio-Visual Event Localization [11.525177542345215]
CACE-Netは、音声信号だけで視覚情報を案内する既存の方法とは異なる。
本稿では、双方向の双方向の注意誘導を適応的に行うための、オーディオ-視覚協調誘導機構を提案する。
AVEデータセットの実験では、CACE-Netがオーディオ視覚イベントローカライゼーションタスクに新しいベンチマークを設定している。
論文 参考訳(メタデータ) (2024-08-04T07:48:12Z) - Label-anticipated Event Disentanglement for Audio-Visual Video Parsing [61.08434062821899]
我々は新しいデコードパラダイムであるアンダーライン・サンダーライン・エンダーライン・アンダーライン・インダーライン・プロジェクション(LEAP)を導入する。
LEAPは、音声/視覚セグメントの符号化された潜在機能を意味的に独立したラベル埋め込みに反復的に投影する。
LEAPパラダイムを促進するために,新しい音声・視覚的類似性損失関数を含むセマンティック・アウェア・最適化戦略を提案する。
論文 参考訳(メタデータ) (2024-07-11T01:57:08Z) - CM-PIE: Cross-modal perception for interactive-enhanced audio-visual
video parsing [23.85763377992709]
本稿では,セグメントベースアテンションモジュールを適用して,細粒度の特徴を学習できる対話型クロスモーダル認識手法(CM-PIE)を提案する。
当社のモデルでは、Look、Listen、Parseデータセットのパースパフォーマンスが改善されています。
論文 参考訳(メタデータ) (2023-10-11T14:15:25Z) - DiffSED: Sound Event Detection with Denoising Diffusion [70.18051526555512]
生成学習の観点からSED問題を再構築する。
具体的には,騒音拡散過程において,雑音のある提案から音の時間境界を生成することを目的としている。
トレーニング中は,ノイズの多い遅延クエリを基本バージョンに変換することで,ノイズ発生過程の逆転を学習する。
論文 参考訳(メタデータ) (2023-08-14T17:29:41Z) - Audio-Adaptive Activity Recognition Across Video Domains [112.46638682143065]
ドメイン間のばらつきが少なく、どのアクティビティが起こっていないかを確実に示すことができるので、ドメイン適応のためにアクティビティサウンドを活用します。
視覚特徴表現を識別的に調整するオーディオ適応型エンコーダと学習方法を提案する。
また、アクターシフトという新たなタスクを対応するオーディオ・ビジュアル・データセットで導入し、アクターの出現が劇的に変化する状況において、我々の手法に挑戦する。
論文 参考訳(メタデータ) (2022-03-27T08:15:20Z) - Learnable Irrelevant Modality Dropout for Multimodal Action Recognition
on Modality-Specific Annotated Videos [10.478479158063982]
本稿では,アクション認識のための視覚特異的アノテーション付きビデオにおける音声モダリティを効果的に活用するための新しいフレームワークを提案する。
我々は、各ビデオラベルをK関連オーディオラベルにマッピングするセマンティックオーディオビデオラベル辞書(SAVLD)を構築した。
また、視覚的モダリティを効率的にモデル化する2ストリームビデオトランスも提案する。
論文 参考訳(メタデータ) (2022-03-06T17:31:06Z) - Unsupervised Sound Localization via Iterative Contrastive Learning [106.56167882750792]
データアノテーションを必要としない反復型コントラスト学習フレームワークを提案する。
次に、擬似ラベルを用いて、同じビデオからサンプリングされた視覚信号と音声信号の相関関係を学習する。
我々の反復的戦略は徐々に音像の局所化を奨励し、非発声領域と参照音声との相関を減少させる。
論文 参考訳(メタデータ) (2021-04-01T07:48:29Z) - Learning Audio-Visual Correlations from Variational Cross-Modal
Generation [35.07257471319274]
我々は,モーダル間生成の観点から,音声と視覚の相関関係を自己監督的に学習する。
学習した相関関係は、オーディオ-視覚的クロスモーダルなローカライゼーションや検索など、複数の下流タスクに容易に適用できる。
論文 参考訳(メタデータ) (2021-02-05T21:27:00Z) - Look, Listen, and Attend: Co-Attention Network for Self-Supervised
Audio-Visual Representation Learning [17.6311804187027]
音声と視覚イベントの相関関係は、ニューラルネットワークをトレーニングするための自由教師付き情報として利用することができる。
本稿では,非競合ビデオから汎用的なクロスモーダル表現を学習するためのコアテンション機構を備えた,新しい自己教師型フレームワークを提案する。
実験の結果,従来の手法に比べてパラメータが少なめでありながら,プレテキストタスク上での最先端性能が得られた。
論文 参考訳(メタデータ) (2020-08-13T10:08:12Z) - Learning Modality Interaction for Temporal Sentence Localization and
Event Captioning in Videos [76.21297023629589]
そこで本稿では,ビデオの各対のモダリティの相補的情報をよりよく活用するために,ペアワイズなモダリティ相互作用を学習するための新しい手法を提案する。
提案手法は,4つの標準ベンチマークデータセットの最先端性能を実現する。
論文 参考訳(メタデータ) (2020-07-28T12:40:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。