論文の概要: Language-based Audio Retrieval with Co-Attention Networks
- arxiv url: http://arxiv.org/abs/2412.20914v1
- Date: Mon, 30 Dec 2024 12:49:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-01 14:38:24.916812
- Title: Language-based Audio Retrieval with Co-Attention Networks
- Title(参考訳): Co-Attention Network を用いた言語に基づく音声検索
- Authors: Haoran Sun, Zimu Wang, Qiuyi Chen, Jianjun Chen, Jia Wang, Haiyang Zhang,
- Abstract要約: 本稿では,言語に基づく音声検索のための新しいフレームワークを提案する。
本稿では,テキストと音声のセマンティックアライメントを改良するために,コアテンションモジュールを積み重ねたり繰り返したりする,カスケード型コアテンションアーキテクチャを提案する。
2つの公開データセットで行った実験により,提案手法は最先端手法よりも優れた性能が得られることが示された。
- 参考スコア(独自算出の注目度): 22.155383794829977
- License:
- Abstract: In recent years, user-generated audio content has proliferated across various media platforms, creating a growing need for efficient retrieval methods that allow users to search for audio clips using natural language queries. This task, known as language-based audio retrieval, presents significant challenges due to the complexity of learning semantic representations from heterogeneous data across both text and audio modalities. In this work, we introduce a novel framework for the language-based audio retrieval task that leverages co-attention mechanismto jointly learn meaningful representations from both modalities. To enhance the model's ability to capture fine-grained cross-modal interactions, we propose a cascaded co-attention architecture, where co-attention modules are stacked or iterated to progressively refine the semantic alignment between text and audio. Experiments conducted on two public datasets show that the proposed method can achieve better performance than the state-of-the-art method. Specifically, our best performed co-attention model achieves a 16.6% improvement in mean Average Precision on Clotho dataset, and a 15.1% improvement on AudioCaps.
- Abstract(参考訳): 近年、ユーザ生成オーディオコンテンツは様々なメディアプラットフォームで増加し、自然言語クエリを使って音声クリップを検索できる効率的な検索方法の必要性が高まっている。
言語に基づく音声検索として知られるこのタスクは、テキストとオーディオの両モードで異質なデータから意味表現を学習するのが複雑になるため、大きな課題を提起する。
本研究では,両モードから有意義な表現を共同学習するコアテンション機構を活用した,言語に基づく音声検索タスクのための新しいフレームワークを提案する。
そこで本研究では,テキストと音声のセマンティックアライメントを段階的に改善するために,コアテンションモジュールを積み重ねたり反復させたりする,ケースケード型コアテンションアーキテクチャを提案する。
2つの公開データセットで行った実験により,提案手法は最先端手法よりも優れた性能が得られることが示された。
具体的には,Clothoデータセットの平均精度が16.6%向上し,AudioCapsが15.1%向上した。
関連論文リスト
- AudioSetMix: Enhancing Audio-Language Datasets with LLM-Assisted Augmentations [1.2101820447447276]
近年,音声言語領域におけるマルチモーダル学習は大きな進歩を遂げている。
しかし、音声学習は、画像言語タスクと比較して、限られたデータや低品質のデータによって困難に直面している。
本手法は,音声クリップを自然言語ラベルと対応する音声信号処理操作で拡張することにより,音声キャプチャペアを体系的に生成する。
このスケーラブルな方法は、テキストおよびオーディオ関連モデルの高品質なトレーニングデータセットであるAudioSetMixを生成する。
論文 参考訳(メタデータ) (2024-05-17T21:08:58Z) - Multilingual Audio-Visual Speech Recognition with Hybrid CTC/RNN-T Fast Conformer [59.57249127943914]
本稿では,複数の改良を加えた多言語音声認識モデルを提案する。
我々は、6つの異なる言語に対する音声視覚訓練データの量を増やし、重複しない多言語データセットの自動書き起こしを生成する。
提案モデルでは, LRS3データセット上での新たな最先端性能を実現し, WERは0.8%に達した。
論文 参考訳(メタデータ) (2024-03-14T01:16:32Z) - Audio-Visual Speaker Verification via Joint Cross-Attention [4.229744884478575]
モーダル間補間情報とモーダル内情報を完全に活用するためのモーダル間共同注意
モーダル内およびモーダル間関係を効率よく活用することで、話者検証のための音声・視覚融合の性能が著しく向上することを示してきた。
論文 参考訳(メタデータ) (2023-09-28T16:25:29Z) - Auto-ACD: A Large-scale Dataset for Audio-Language Representation Learning [50.28566759231076]
高品質なキャプションを持つ音声データセットを構築するための,革新的で自動的なアプローチを提案する。
具体的には、150万以上のオーディオテキストペアからなる、大規模で高品質なオーディオ言語データセットをAuto-ACDとして構築する。
我々はLLMを用いて,抽出したマルチモーダルな手がかりによって導かれる,各音声の連接キャプションを言い換える。
論文 参考訳(メタデータ) (2023-09-20T17:59:32Z) - Parameter Efficient Audio Captioning With Faithful Guidance Using
Audio-text Shared Latent Representation [0.9285295512807729]
本稿では,幻覚音の字幕を生成するためのデータ拡張手法を提案する。
次に,パラメータ効率の良い推論時間忠実復号アルゴリズムを提案し,より多くのデータで訓練されたより大きなモデルに匹敵する性能を持つ小型オーディオキャプションモデルを実現する。
論文 参考訳(メタデータ) (2023-09-06T19:42:52Z) - Improving Audio-Visual Speech Recognition by Lip-Subword Correlation
Based Visual Pre-training and Cross-Modal Fusion Encoder [58.523884148942166]
本稿では,事前学習および微調整訓練の枠組みの下で,音声視覚音声認識(AVSR)を改善するための2つの新しい手法を提案する。
まず, マンダリンにおける口唇形状と音節レベルサブワード単位の相関について検討し, 口唇形状から良好なフレームレベル音節境界を確立する。
次に,音声誘導型クロスモーダルフュージョンエンコーダ(CMFE)ニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2023-08-14T08:19:24Z) - Cross-modal Audio-visual Co-learning for Text-independent Speaker
Verification [55.624946113550195]
本稿では,モーダルな発話協調学習パラダイムを提案する。
モーダル変換相関を学習するために、2つのクロスモーダルブースターを導入する。
LRSLip3, GridLip, LomGridLip, VoxLip を用いた実験の結果,提案手法は平均相対性能を60%, 20%向上させることがわかった。
論文 参考訳(メタデータ) (2023-02-22T10:06:37Z) - Audio-text Retrieval in Context [24.38055340045366]
そこで本研究では,音声・テキストのアライメントを改善するために,複数のオーディオ機能とシーケンスアグリゲーション手法について検討する。
我々は,事前学習した音声特徴と記述子に基づくアグリゲーション法を用いた文脈音声テキスト検索システムを構築した。
提案システムでは、リコール、中央値、平均値を含むすべての指標において、双方向音声テキスト検索において顕著な改善が達成されている。
論文 参考訳(メタデータ) (2022-03-25T13:41:17Z) - CTAL: Pre-training Cross-modal Transformer for Audio-and-Language
Representations [20.239063010740853]
音声と言語間のモダリティ内およびモダリティ間接続を学習することを目的としたCTAL(Cross-modal Transformer for Audio-and-Language)を提案する。
感情分類,感情分析,話者検証など,様々なタスクにまたがる顕著な改善が観察された。
論文 参考訳(メタデータ) (2021-09-01T04:18:19Z) - Seeing wake words: Audio-visual Keyword Spotting [103.12655603634337]
KWS-Netは、類似マップ中間表現を用いてタスクをシーケンスマッチングとパターン検出に分離する新しい畳み込みアーキテクチャである。
本手法は他の言語,特にフランス語とドイツ語に一般化し,より少ない言語データで英語に匹敵する性能が得られることを示す。
論文 参考訳(メタデータ) (2020-09-02T17:57:38Z) - Unsupervised Cross-Modal Audio Representation Learning from Unstructured
Multilingual Text [69.55642178336953]
教師なし音声表現学習へのアプローチを提案する。
3重項ニューラルネットワークアーキテクチャに基づいて、意味論的に関連付けられたクロスモーダル情報を用いて、音声トラック関連性を推定する。
我々のアプローチは、様々なアノテーションスタイルと、このコレクションの異なる言語に不変であることを示す。
論文 参考訳(メタデータ) (2020-03-27T07:37:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。