Low-Light Image Enhancement via Generative Perceptual Priors
- URL: http://arxiv.org/abs/2412.20916v1
- Date: Mon, 30 Dec 2024 12:51:52 GMT
- Title: Low-Light Image Enhancement via Generative Perceptual Priors
- Authors: Han Zhou, Wei Dong, Xiaohong Liu, Yulun Zhang, Guangtao Zhai, Jun Chen,
- Abstract summary: We introduce a novel textbfLLIE framework with the guidance of vision-language models (VLMs)
We first propose a pipeline that guides VLMs to assess multiple visual attributes of the LL image and quantify the assessment to output the global and local perceptual priors.
To incorporate these generative perceptual priors to benefit LLIE, we introduce a transformer-based backbone in the diffusion process, and develop a new layer normalization (textittextbfLPP-Attn) guided by global and local perceptual priors.
- Score: 75.01646333310073
- License:
- Abstract: Although significant progress has been made in enhancing visibility, retrieving texture details, and mitigating noise in Low-Light (LL) images, the challenge persists in applying current Low-Light Image Enhancement (LLIE) methods to real-world scenarios, primarily due to the diverse illumination conditions encountered. Furthermore, the quest for generating enhancements that are visually realistic and attractive remains an underexplored realm. In response to these challenges, we introduce a novel \textbf{LLIE} framework with the guidance of \textbf{G}enerative \textbf{P}erceptual \textbf{P}riors (\textbf{GPP-LLIE}) derived from vision-language models (VLMs). Specifically, we first propose a pipeline that guides VLMs to assess multiple visual attributes of the LL image and quantify the assessment to output the global and local perceptual priors. Subsequently, to incorporate these generative perceptual priors to benefit LLIE, we introduce a transformer-based backbone in the diffusion process, and develop a new layer normalization (\textit{\textbf{GPP-LN}}) and an attention mechanism (\textit{\textbf{LPP-Attn}}) guided by global and local perceptual priors. Extensive experiments demonstrate that our model outperforms current SOTA methods on paired LL datasets and exhibits superior generalization on real-world data. The code is released at \url{https://github.com/LowLevelAI/GPP-LLIE}.
Related papers
- Standing on the Shoulders of Giants: Reprogramming Visual-Language Model for General Deepfake Detection [16.21235742118949]
We propose a novel approach that repurposes a well-trained Vision-Language Models (VLMs) for general deepfake detection.
Motivated by the model reprogramming paradigm that manipulates the model prediction via input perturbations, our method can reprogram a pre-trained VLM model.
Experiments on several popular benchmark datasets demonstrate that the cross-dataset and cross-manipulation performances of deepfake detection can be significantly and consistently improved.
arXiv Detail & Related papers (2024-09-04T12:46:30Z) - Zero-shot Text-guided Infinite Image Synthesis with LLM guidance [2.531998650341267]
There is a lack of text-image paired datasets with high-resolution and contextual diversity.
Expanding images based on text requires global coherence and rich local context understanding.
We propose a novel approach utilizing Large Language Models (LLMs) for both global coherence and local context understanding.
arXiv Detail & Related papers (2024-07-17T15:10:01Z) - GLARE: Low Light Image Enhancement via Generative Latent Feature based Codebook Retrieval [80.96706764868898]
We present a new Low-light Image Enhancement (LLIE) network via Generative LAtent feature based codebook REtrieval (GLARE)
We develop a generative Invertible Latent Normalizing Flow (I-LNF) module to align the LL feature distribution to NL latent representations, guaranteeing the correct code retrieval in the codebook.
Experiments confirm the superior performance of GLARE on various benchmark datasets and real-world data.
arXiv Detail & Related papers (2024-07-17T09:40:15Z) - LDCA: Local Descriptors with Contextual Augmentation for Few-Shot
Learning [0.0]
We introduce a novel approach termed "Local Descriptor with Contextual Augmentation (LDCA)"
LDCA bridges the gap between local and global understanding by leveraging an adaptive global contextual enhancement module.
Experiments underscore the efficacy of our method, showing a maximal absolute improvement of 20% over the next-best on fine-grained classification datasets.
arXiv Detail & Related papers (2024-01-24T14:44:48Z) - GIFD: A Generative Gradient Inversion Method with Feature Domain
Optimization [52.55628139825667]
Federated Learning (FL) has emerged as a promising distributed machine learning framework to preserve clients' privacy.
Recent studies find that an attacker can invert the shared gradients and recover sensitive data against an FL system by leveraging pre-trained generative adversarial networks (GAN) as prior knowledge.
We propose textbfGradient textbfInversion over textbfFeature textbfDomains (GIFD), which disassembles the GAN model and searches the feature domains of the intermediate layers.
arXiv Detail & Related papers (2023-08-09T04:34:21Z) - Bilevel Generative Learning for Low-Light Vision [64.77933848939327]
We propose a generic low-light vision solution by introducing a generative block to convert data from the RAW to the RGB domain.
This novel approach connects diverse vision problems by explicitly depicting data generation, which is the first in the field.
We develop two types of learning strategies targeting different goals, namely low cost and high accuracy, to acquire a new bilevel generative learning paradigm.
arXiv Detail & Related papers (2023-08-07T07:59:56Z) - Towards General Visual-Linguistic Face Forgery Detection [95.73987327101143]
Deepfakes are realistic face manipulations that can pose serious threats to security, privacy, and trust.
Existing methods mostly treat this task as binary classification, which uses digital labels or mask signals to train the detection model.
We propose a novel paradigm named Visual-Linguistic Face Forgery Detection(VLFFD), which uses fine-grained sentence-level prompts as the annotation.
arXiv Detail & Related papers (2023-07-31T10:22:33Z) - Ultra-High-Definition Low-Light Image Enhancement: A Benchmark and
Transformer-Based Method [51.30748775681917]
We consider the task of low-light image enhancement (LLIE) and introduce a large-scale database consisting of images at 4K and 8K resolution.
We conduct systematic benchmarking studies and provide a comparison of current LLIE algorithms.
As a second contribution, we introduce LLFormer, a transformer-based low-light enhancement method.
arXiv Detail & Related papers (2022-12-22T09:05:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.