GLARE: Low Light Image Enhancement via Generative Latent Feature based Codebook Retrieval
- URL: http://arxiv.org/abs/2407.12431v1
- Date: Wed, 17 Jul 2024 09:40:15 GMT
- Title: GLARE: Low Light Image Enhancement via Generative Latent Feature based Codebook Retrieval
- Authors: Han Zhou, Wei Dong, Xiaohong Liu, Shuaicheng Liu, Xiongkuo Min, Guangtao Zhai, Jun Chen,
- Abstract summary: We present a new Low-light Image Enhancement (LLIE) network via Generative LAtent feature based codebook REtrieval (GLARE)
We develop a generative Invertible Latent Normalizing Flow (I-LNF) module to align the LL feature distribution to NL latent representations, guaranteeing the correct code retrieval in the codebook.
Experiments confirm the superior performance of GLARE on various benchmark datasets and real-world data.
- Score: 80.96706764868898
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Most existing Low-light Image Enhancement (LLIE) methods either directly map Low-Light (LL) to Normal-Light (NL) images or use semantic or illumination maps as guides. However, the ill-posed nature of LLIE and the difficulty of semantic retrieval from impaired inputs limit these methods, especially in extremely low-light conditions. To address this issue, we present a new LLIE network via Generative LAtent feature based codebook REtrieval (GLARE), in which the codebook prior is derived from undegraded NL images using a Vector Quantization (VQ) strategy. More importantly, we develop a generative Invertible Latent Normalizing Flow (I-LNF) module to align the LL feature distribution to NL latent representations, guaranteeing the correct code retrieval in the codebook. In addition, a novel Adaptive Feature Transformation (AFT) module, featuring an adjustable function for users and comprising an Adaptive Mix-up Block (AMB) along with a dual-decoder architecture, is devised to further enhance fidelity while preserving the realistic details provided by codebook prior. Extensive experiments confirm the superior performance of GLARE on various benchmark datasets and real-world data. Its effectiveness as a preprocessing tool in low-light object detection tasks further validates GLARE for high-level vision applications. Code is released at https://github.com/LowLevelAI/GLARE.
Related papers
- Low-Light Image Enhancement via Generative Perceptual Priors [75.01646333310073]
We introduce a novel textbfLLIE framework with the guidance of vision-language models (VLMs)
We first propose a pipeline that guides VLMs to assess multiple visual attributes of the LL image and quantify the assessment to output the global and local perceptual priors.
To incorporate these generative perceptual priors to benefit LLIE, we introduce a transformer-based backbone in the diffusion process, and develop a new layer normalization (textittextbfLPP-Attn) guided by global and local perceptual priors.
arXiv Detail & Related papers (2024-12-30T12:51:52Z) - CodeEnhance: A Codebook-Driven Approach for Low-Light Image Enhancement [97.95330185793358]
Low-light image enhancement (LLIE) aims to improve low-illumination images.
Existing methods face two challenges: uncertainty in restoration from diverse brightness degradations and loss of texture and color information.
We propose a novel enhancement approach, CodeEnhance, by leveraging quantized priors and image refinement.
arXiv Detail & Related papers (2024-04-08T07:34:39Z) - Enhancing Low-light Light Field Images with A Deep Compensation Unfolding Network [52.77569396659629]
This paper presents the deep compensation network unfolding (DCUNet) for restoring light field (LF) images captured under low-light conditions.
The framework uses the intermediate enhanced result to estimate the illumination map, which is then employed in the unfolding process to produce a new enhanced result.
To properly leverage the unique characteristics of LF images, this paper proposes a pseudo-explicit feature interaction module.
arXiv Detail & Related papers (2023-08-10T07:53:06Z) - Ultra-High-Definition Low-Light Image Enhancement: A Benchmark and
Transformer-Based Method [51.30748775681917]
We consider the task of low-light image enhancement (LLIE) and introduce a large-scale database consisting of images at 4K and 8K resolution.
We conduct systematic benchmarking studies and provide a comparison of current LLIE algorithms.
As a second contribution, we introduce LLFormer, a transformer-based low-light enhancement method.
arXiv Detail & Related papers (2022-12-22T09:05:07Z) - Toward Fast, Flexible, and Robust Low-Light Image Enhancement [87.27326390675155]
We develop a new Self-Calibrated Illumination (SCI) learning framework for fast, flexible, and robust brightening images in real-world low-light scenarios.
Considering the computational burden of the cascaded pattern, we construct the self-calibrated module which realizes the convergence between results of each stage.
We make comprehensive explorations to SCI's inherent properties including operation-insensitive adaptability and model-irrelevant generality.
arXiv Detail & Related papers (2022-04-21T14:40:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.