論文の概要: UnrealZoo: Enriching Photo-realistic Virtual Worlds for Embodied AI
- arxiv url: http://arxiv.org/abs/2412.20977v2
- Date: Tue, 12 Aug 2025 11:56:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-13 18:56:18.540489
- Title: UnrealZoo: Enriching Photo-realistic Virtual Worlds for Embodied AI
- Title(参考訳): UnrealZoo: 身近なAIのためのフォトリアリスティックバーチャルワールド
- Authors: Fangwei Zhong, Kui Wu, Churan Wang, Hao Chen, Hai Ci, Zhoujun Li, Yizhou Wang,
- Abstract要約: Unreal Engine上に構築された100以上の写真リアルな3DバーチャルワールドのコレクションであるUnrealZooを紹介します。
私たちはまた、人間、動物、ロボット、そしてAI研究の具体化のための車両を含む、さまざまな遊び可能なエンティティも提供しています。
- 参考スコア(独自算出の注目度): 37.47562766916571
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce UnrealZoo, a collection of over 100 photo-realistic 3D virtual worlds built on Unreal Engine, designed to reflect the complexity and variability of open-world environments. We also provide a rich variety of playable entities, including humans, animals, robots, and vehicles for embodied AI research. We extend UnrealCV with optimized APIs and tools for data collection, environment augmentation, distributed training, and benchmarking. These improvements achieve significant improvements in the efficiency of rendering and communication, enabling advanced applications such as multi-agent interactions. Our experimental evaluation across visual navigation and tracking tasks reveals two key insights: 1) environmental diversity provides substantial benefits for developing generalizable reinforcement learning (RL) agents, and 2) current embodied agents face persistent challenges in open-world scenarios, including navigation in unstructured terrain, adaptation to unseen morphologies, and managing latency in the close-loop control systems for interacting in highly dynamic objects. UnrealZoo thus serves as both a comprehensive testing ground and a pathway toward developing more capable embodied AI systems for real-world deployment.
- Abstract(参考訳): UnrealZooは、オープンワールド環境の複雑さと多様性を反映した、Unreal Engine上に構築された100以上のフォトリアリスティックな3Dバーチャルワールドのコレクションです。
私たちはまた、人間、動物、ロボット、そしてAI研究の具体化のための車両を含む、さまざまな遊び可能なエンティティも提供しています。
データ収集、環境拡張、分散トレーニング、ベンチマークのための最適化されたAPIとツールでUnrealCVを拡張します。
これらの改善は、レンダリングと通信の効率を大幅に改善し、マルチエージェントインタラクションのような高度なアプリケーションを可能にする。
視覚ナビゲーションとトラッキングタスクによる実験結果から,2つの重要な洞察が得られた。
1)環境多様性は、総合的な強化学習(RL)エージェントを開発する上で大きな利益をもたらす。
2) 現在の実施エージェントは,非構造地形のナビゲーション,見えない形態への適応,高度に動的に相互作用するクローズループ制御システムにおけるレイテンシ管理など,オープンワールドのシナリオにおいて永続的な課題に直面している。
したがって、UnrealZooは総合的なテストの場であり、現実世界のデプロイメントのためのより有能なAIシステムを開発するための道のりでもある。
関連論文リスト
- GenEx: Generating an Explorable World [59.0666303068111]
我々は、その生成的想像力によって導かれる複雑なエンボディ世界探査を計画できるシステムGenExを紹介する。
GenExは、単一のRGB画像から3D一貫性のある想像環境全体を生成します。
GPT支援エージェントは、ゴールに依存しない探索とゴール駆動ナビゲーションの両方を含む複雑な実施作業を行う。
論文 参考訳(メタデータ) (2024-12-12T18:59:57Z) - EmbodiedCity: A Benchmark Platform for Embodied Agent in Real-world City Environment [38.14321677323052]
身体的人工知能は、エージェントの身体が人間のような行動を引き起こす役割を強調している。
本稿では,実環境におけるインテリジェンス評価のためのベンチマークプラットフォームを構築する。
論文 参考訳(メタデータ) (2024-10-12T17:49:26Z) - Multimodal 3D Fusion and In-Situ Learning for Spatially Aware AI [10.335943413484815]
拡張現実における仮想世界と物理世界のシームレスな統合は、物理的な環境を意味的に「理解する」システムから恩恵を受ける。
本稿では,意味的知識と言語的知識を幾何学的表現と一体化する多モード3Dオブジェクト表現を提案する。
提案システムの有用性を,Magic Leap 2上の2つの実世界のARアプリケーションを用いて実証する:a) 自然言語を用いた物理環境における空間探索,b) 時間とともにオブジェクトの変化を追跡するインテリジェントなインベントリシステム。
論文 参考訳(メタデータ) (2024-10-06T23:25:21Z) - Learning Robot Soccer from Egocentric Vision with Deep Reinforcement Learning [17.906144781244336]
我々は,自己中心型RGBビジョンによる完全オンボード計算とセンシングにより,エンドツーエンドのロボットサッカーポリシーを訓練する。
本稿では,マルチエージェントロボットサッカーにおけるエンドツーエンドトレーニングの最初の実演を行う。
論文 参考訳(メタデータ) (2024-05-03T18:41:13Z) - Scaling Instructable Agents Across Many Simulated Worlds [70.97268311053328]
私たちのゴールは、シミュレーションされた3D環境で人間ができることを何でも達成できるエージェントを開発することです。
我々のアプローチは、最小限の仮定を示唆しながら、言語駆動の一般性に焦点を当てている。
我々のエージェントは、汎用的なヒューマンライクなインタフェースを使って、リアルタイムで環境と対話する。
論文 参考訳(メタデータ) (2024-03-13T17:50:32Z) - Self-supervised novel 2D view synthesis of large-scale scenes with
efficient multi-scale voxel carving [77.07589573960436]
実シーンの新たなビューを生成するために,効率的なマルチスケールのボクセル彫刻手法を提案する。
我々の最終的な高解像度出力は、ボクセル彫刻モジュールによって自動的に生成されるデータに基づいて効率よく自己学習される。
実環境における複雑で大規模なシーンにおける本手法の有効性を実証する。
論文 参考訳(メタデータ) (2023-06-26T13:57:05Z) - ArK: Augmented Reality with Knowledge Interactive Emergent Ability [115.72679420999535]
基礎モデルから新しいドメインへの知識記憶の伝達を学習する無限エージェントを開発する。
私たちのアプローチの核心は、Augmented Reality with Knowledge Inference Interaction (ArK)と呼ばれる新しいメカニズムである。
我々のArKアプローチは,大規模な基礎モデルと組み合わせることで,生成された2D/3Dシーンの品質を大幅に向上することを示す。
論文 参考訳(メタデータ) (2023-05-01T17:57:01Z) - WILD-SCAV: Benchmarking FPS Gaming AI on Unity3D-based Environments [5.020816812380825]
深部強化学習(RL)の最近の進歩は,シミュレーション環境における複雑な意思決定能力を示している。
しかしながら、これらは、トレーニングやテストが行われる環境の複雑さやバリエーションが欠如しているため、より複雑な問題はほとんどありません。
我々は,このギャップを埋めるために,3次元オープンワールドFPSゲームに基づく,強力でオープンな環境であるWILD-SCAVを開発した。
エージェントは3D環境を理解し、ナビゲートし、計画し、人間のような方法で競争し、協力することができる。
論文 参考訳(メタデータ) (2022-10-14T13:39:41Z) - Evaluating Continual Learning Algorithms by Generating 3D Virtual
Environments [66.83839051693695]
連続学習とは、人間や動物が特定の環境で徐々に学習する能力である。
本稿では3次元仮想環境の最近の進歩を活用して,フォトリアリスティックな外観を持つ潜在的に長寿命な動的シーンの自動生成にアプローチすることを提案する。
本論文の新たな要素は、シーンがパラメトリックな方法で記述され、エージェントが知覚する入力ストリームの視覚的複雑さを完全に制御できることである。
論文 参考訳(メタデータ) (2021-09-16T10:37:21Z) - CRAVES: Controlling Robotic Arm with a Vision-based Economic System [96.56564257199474]
現実のタスクを達成するためにロボットアームを訓練することは、アカデミックと産業の両方で注目を集めている。
本研究は,この分野におけるコンピュータビジョンアルゴリズムの役割について論じる。
本稿では,3次元モデルを用いて大量の合成データを生成する方法を提案する。
論文 参考訳(メタデータ) (2018-12-03T13:28:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。