論文の概要: Verbosity-Aware Rationale Reduction: Effective Reduction of Redundant Rationale via Principled Criteria
- arxiv url: http://arxiv.org/abs/2412.21006v2
- Date: Tue, 31 Dec 2024 03:06:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-03 11:36:45.272401
- Title: Verbosity-Aware Rationale Reduction: Effective Reduction of Redundant Rationale via Principled Criteria
- Title(参考訳): バービシティー・アウェア・ライナール・リダクション:原則的基準による冗長ライナールの効果的リダクション
- Authors: Joonwon Jang, Jaehee Kim, Wonbin Kweon, Hwanjo Yu,
- Abstract要約: 大規模言語モデル(LLM)は、最終回答の品質を高めるために、広範囲な中間推論単位(トークン、文など)を生成することに依存する。
本稿では,冗長な推論文を識別・除去するために,確率に基づく基準,冗長性を活用した文レベルの合理的化学習フレームワークを提案する。
これはLLMの元々の推論能力を保持し、様々なモデルやタスクに対して平均17.15%のコスト削減を実現している。
- 参考スコア(独自算出の注目度): 16.183150708539284
- License:
- Abstract: Large Language Models (LLMs) rely on generating extensive intermediate reasoning units (e.g., tokens, sentences) to enhance final answer quality across a wide range of complex tasks. While generating multiple reasoning paths or iteratively refining rationales proves effective for improving performance, these approaches inevitably result in significantly higher inference costs. In this work, we propose a novel sentence-level rationale reduction training framework that leverages likelihood-based criteria, verbosity, to identify and remove redundant reasoning sentences. Unlike previous approaches that utilize token-level reduction, our sentence-level reduction framework maintains model performance while reducing generation length. This preserves the original reasoning abilities of LLMs and achieves an average 17.15% reduction in generation costs across various models and tasks.
- Abstract(参考訳): 大規模言語モデル(LLM)は、幅広い複雑なタスクにおける最終回答品質を高めるために、幅広い中間推論単位(例えば、トークン、文)を生成することに依存する。
複数の推論パスを生成したり、反復的に論理を精製することは、性能を向上させるのに効果的であることを示す一方で、これらのアプローチは必然的に推論コストを大幅に高める。
本研究では,余分な推論文を識別・削除するために,確率に基づく基準,冗長性を活用する文レベルの合理的化学習フレームワークを提案する。
トークンレベルの削減を利用した従来の手法とは異なり、文レベルの削減フレームワークは生成長を減らしながらモデル性能を維持できる。
これはLLMの元々の推論能力を保持し、様々なモデルやタスクに対して平均17.15%のコスト削減を実現している。
関連論文リスト
- Reward-Guided Speculative Decoding for Efficient LLM Reasoning [80.55186052123196]
Reward-Guided Speculative Decoding (RSD)は,大規模言語モデル(LLM)における推論の効率向上を目的とした新しいフレームワークである。
RSDは、厳密な偏りを強制する既存の投機的復号法とは対照的に、制御されたバイアスをハイリワード出力の優先順位付けに取り入れている。
RSDは,対象モデルのみでの復号化に対して,高い効率向上を実現し,並列復号法よりも高い精度を実現している。
論文 参考訳(メタデータ) (2025-01-31T17:19:57Z) - BRiTE: Bootstrapping Reinforced Thinking Process to Enhance Language Model Reasoning [78.63421517563056]
大規模言語モデル(LLM)は複雑な推論タスクにおいて顕著な機能を示した。
本稿では,新しいグラフィカルモデルを用いてLLM推論を定式化する統一確率的フレームワークを提案する。
本稿では,Bootstrapping Reinforced Thinking Process (BRiTE)アルゴリズムについて述べる。
論文 参考訳(メタデータ) (2025-01-31T02:39:07Z) - Think Beyond Size: Adaptive Prompting for More Effective Reasoning [0.0]
本稿では,動的かつ反復的なフレームワークであるAdaptive Promptingを紹介する。
その結果、Adaptive Promptingは、算術的推論(GSM8K、MultiArithm)、論理的推論、コモンセンスタスクなど、様々な推論ベンチマークのパフォーマンスを著しく向上させることを示した。
提案手法は,計算効率を維持しつつ,GPT-4などの大規模モデルと競合する性能を実現する。
論文 参考訳(メタデータ) (2024-10-10T17:14:36Z) - Rational Metareasoning for Large Language Models [5.5539136805232205]
大きな言語モデル(LLM)を使用するためのコアテクニックとして,推論への関与を促す声が上がっている。
本研究は,認知科学で用いられるメタレゾニングの計算モデルに基づく新しいアプローチを導入する。
我々は不必要な推論を罰することで計算の価値を組み込む報酬関数を開発する。
論文 参考訳(メタデータ) (2024-10-07T23:48:52Z) - Aggregation of Reasoning: A Hierarchical Framework for Enhancing Answer Selection in Large Language Models [84.15513004135576]
最近の研究は、複数の推論チェーンをサンプリングし、応答周波数に基づいてアンサンブルすることで、Large Language Models(LLMs)の推論性能を向上させる。
このアプローチは、正しい答えが少数派である場合に失敗する。
階層的推論集約フレームワークAoRを導入し、推論連鎖の評価に基づいて回答を選択する。
論文 参考訳(メタデータ) (2024-05-21T17:12:19Z) - Augmenting Unsupervised Reinforcement Learning with Self-Reference [63.68018737038331]
人間は、新しいタスクを学ぶ際に、過去の経験を明確に表現する能力を持っている。
本稿では,歴史情報を活用するためのアドオンモジュールとして,自己参照(SR)アプローチを提案する。
提案手法は,非教師付き強化学習ベンチマークにおけるIQM(Interquartile Mean)性能と最適ギャップ削減の両面から,最先端の成果を実現する。
論文 参考訳(メタデータ) (2023-11-16T09:07:34Z) - CREST: A Joint Framework for Rationalization and Counterfactual Text
Generation [5.606679908174783]
我々は選択的合理化と対実テキスト生成のためのフレームワークであるCREST(ContRastive Edits with Sparse raTionalization)を紹介する。
CRESTは、従来の方法よりも自然な有効な偽物を生成する。
CRESTのカウンターファクトを利用して選択的論理を規則化する新たな損失関数は、モデルの堅牢性と合理性の両方を改善します。
論文 参考訳(メタデータ) (2023-05-26T16:34:58Z) - Rationale-Augmented Ensembles in Language Models [53.45015291520658]
我々は、数発のテキスト内学習のための合理化促進策を再考する。
我々は、出力空間における合理的サンプリングを、性能を確実に向上させるキーコンポーネントとして特定する。
有理拡張アンサンブルは既存のプロンプト手法よりも正確で解釈可能な結果が得られることを示す。
論文 参考訳(メタデータ) (2022-07-02T06:20:57Z) - False Correlation Reduction for Offline Reinforcement Learning [115.11954432080749]
本稿では,実効的かつ理論的に証明可能なアルゴリズムであるオフラインRLに対するfalSe Correlation Reduction (SCORE)を提案する。
SCOREは、標準ベンチマーク(D4RL)において、様々なタスクにおいて3.1倍の高速化でSoTA性能を達成することを実証的に示す。
論文 参考訳(メタデータ) (2021-10-24T15:34:03Z) - Pattern-aware Data Augmentation for Query Rewriting in Voice Assistant
Systems [10.332550622090718]
既存のトレーニングペアからパターンを学習し、ラベルの書き換えから書き換え候補を逆に生成し、不十分なQRトレーニングデータを補う拡張フレームワークを提案する。
実験の結果,QRベースラインを十分に訓練し,低リソース領域やローカライズ領域でのQR性能向上に有効である可能性が示された。
論文 参考訳(メタデータ) (2020-12-21T16:36:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。