Improving Location-based Thermal Emission Side-Channel Analysis Using Iterative Transfer Learning
- URL: http://arxiv.org/abs/2412.21030v1
- Date: Mon, 30 Dec 2024 15:56:34 GMT
- Title: Improving Location-based Thermal Emission Side-Channel Analysis Using Iterative Transfer Learning
- Authors: Tun-Chieh Lou, Chung-Che Wang, Jyh-Shing Roger Jang, Henian Li, Lang Lin, Norman Chang,
- Abstract summary: This paper proposes the use of iterative transfer learning applied to deep learning models for side-channel attacks.
Experimental results show that when using thermal or power consumption map images as input, our method improves average performance.
- Score: 3.5459927850418116
- License:
- Abstract: This paper proposes the use of iterative transfer learning applied to deep learning models for side-channel attacks. Currently, most of the side-channel attack methods train a model for each individual byte, without considering the correlation between bytes. However, since the models' parameters for attacking different bytes may be similar, we can leverage transfer learning, meaning that we first train the model for one of the key bytes, then use the trained model as a pretrained model for the remaining bytes. This technique can be applied iteratively, a process known as iterative transfer learning. Experimental results show that when using thermal or power consumption map images as input, and multilayer perceptron or convolutional neural network as the model, our method improves average performance, especially when the amount of data is insufficient.
Related papers
- Transferable Post-training via Inverse Value Learning [83.75002867411263]
We propose modeling changes at the logits level during post-training using a separate neural network (i.e., the value network)
After training this network on a small base model using demonstrations, this network can be seamlessly integrated with other pre-trained models during inference.
We demonstrate that the resulting value network has broad transferability across pre-trained models of different parameter sizes.
arXiv Detail & Related papers (2024-10-28T13:48:43Z) - BEND: Bagging Deep Learning Training Based on Efficient Neural Network Diffusion [56.9358325168226]
We propose a Bagging deep learning training algorithm based on Efficient Neural network Diffusion (BEND)
Our approach is simple but effective, first using multiple trained model weights and biases as inputs to train autoencoder and latent diffusion model.
Our proposed BEND algorithm can consistently outperform the mean and median accuracies of both the original trained model and the diffused model.
arXiv Detail & Related papers (2024-03-23T08:40:38Z) - TRAK: Attributing Model Behavior at Scale [79.56020040993947]
We present TRAK (Tracing with Randomly-trained After Kernel), a data attribution method that is both effective and computationally tractable for large-scale, differenti models.
arXiv Detail & Related papers (2023-03-24T17:56:22Z) - Manipulating Transfer Learning for Property Inference [12.832337149563088]
Transfer learning is a popular method for tuning pretrained (upstream) models for different downstream tasks.
We study how an adversary with control over an upstream model used in transfer learning can conduct property inference attacks on a victim's tuned downstream model.
arXiv Detail & Related papers (2023-03-21T07:32:32Z) - Latent Iterative Refinement for Modular Source Separation [44.78689915209527]
Traditional source separation approaches train deep neural network models end-to-end with all the data available at once.
We argue that we can significantly increase resource efficiency during both training and inference stages.
arXiv Detail & Related papers (2022-11-22T00:02:57Z) - How Well Do Sparse Imagenet Models Transfer? [75.98123173154605]
Transfer learning is a classic paradigm by which models pretrained on large "upstream" datasets are adapted to yield good results on "downstream" datasets.
In this work, we perform an in-depth investigation of this phenomenon in the context of convolutional neural networks (CNNs) trained on the ImageNet dataset.
We show that sparse models can match or even outperform the transfer performance of dense models, even at high sparsities.
arXiv Detail & Related papers (2021-11-26T11:58:51Z) - Merging Models with Fisher-Weighted Averaging [24.698591753644077]
We introduce a fundamentally different method for transferring knowledge across models that amounts to "merging" multiple models into one.
Our approach effectively involves computing a weighted average of the models' parameters.
We show that our merging procedure makes it possible to combine models in previously unexplored ways.
arXiv Detail & Related papers (2021-11-18T17:59:35Z) - STAR: Sparse Transformer-based Action Recognition [61.490243467748314]
This work proposes a novel skeleton-based human action recognition model with sparse attention on the spatial dimension and segmented linear attention on the temporal dimension of data.
Experiments show that our model can achieve comparable performance while utilizing much less trainable parameters and achieve high speed in training and inference.
arXiv Detail & Related papers (2021-07-15T02:53:11Z) - ViViT: A Video Vision Transformer [75.74690759089529]
We present pure-transformer based models for video classification.
Our model extracts-temporal tokens from the input video, which are then encoded by a series of transformer layers.
We show how we can effectively regularise the model during training and leverage pretrained image models to be able to train on comparatively small datasets.
arXiv Detail & Related papers (2021-03-29T15:27:17Z) - Generalized Zero and Few-Shot Transfer for Facial Forgery Detection [3.8073142980733]
We propose a new transfer learning approach to address the problem of zero and few-shot transfer in the context of forgery detection.
We find this learning strategy to be surprisingly effective at domain transfer compared to a traditional classification or even state-of-the-art domain adaptation/few-shot learning methods.
arXiv Detail & Related papers (2020-06-21T18:10:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.