TRAK: Attributing Model Behavior at Scale
- URL: http://arxiv.org/abs/2303.14186v2
- Date: Mon, 3 Apr 2023 17:37:50 GMT
- Title: TRAK: Attributing Model Behavior at Scale
- Authors: Sung Min Park, Kristian Georgiev, Andrew Ilyas, Guillaume Leclerc,
Aleksander Madry
- Abstract summary: We present TRAK (Tracing with Randomly-trained After Kernel), a data attribution method that is both effective and computationally tractable for large-scale, differenti models.
- Score: 79.56020040993947
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The goal of data attribution is to trace model predictions back to training
data. Despite a long line of work towards this goal, existing approaches to
data attribution tend to force users to choose between computational
tractability and efficacy. That is, computationally tractable methods can
struggle with accurately attributing model predictions in non-convex settings
(e.g., in the context of deep neural networks), while methods that are
effective in such regimes require training thousands of models, which makes
them impractical for large models or datasets.
In this work, we introduce TRAK (Tracing with the Randomly-projected After
Kernel), a data attribution method that is both effective and computationally
tractable for large-scale, differentiable models. In particular, by leveraging
only a handful of trained models, TRAK can match the performance of attribution
methods that require training thousands of models. We demonstrate the utility
of TRAK across various modalities and scales: image classifiers trained on
ImageNet, vision-language models (CLIP), and language models (BERT and mT5). We
provide code for using TRAK (and reproducing our work) at
https://github.com/MadryLab/trak .
Related papers
- Transferable Post-training via Inverse Value Learning [83.75002867411263]
We propose modeling changes at the logits level during post-training using a separate neural network (i.e., the value network)
After training this network on a small base model using demonstrations, this network can be seamlessly integrated with other pre-trained models during inference.
We demonstrate that the resulting value network has broad transferability across pre-trained models of different parameter sizes.
arXiv Detail & Related papers (2024-10-28T13:48:43Z) - Data Shapley in One Training Run [88.59484417202454]
Data Shapley provides a principled framework for attributing data's contribution within machine learning contexts.
Existing approaches require re-training models on different data subsets, which is computationally intensive.
This paper introduces In-Run Data Shapley, which addresses these limitations by offering scalable data attribution for a target model of interest.
arXiv Detail & Related papers (2024-06-16T17:09:24Z) - StochCA: A Novel Approach for Exploiting Pretrained Models with Cross-Attention [2.66269503676104]
We introduce a novel fine-tuning method, called cross-attention (StochCA), specific to Transformer architectures.
This method modifies the Transformer's self-attention mechanism to selectively utilize knowledge from pretrained models during fine-tuning.
Our experimental results show the superiority of StochCA over state-of-the-art approaches in both areas.
arXiv Detail & Related papers (2024-02-25T13:53:49Z) - Unlearning Traces the Influential Training Data of Language Models [31.33791825286853]
This paper presents UnTrac: unlearning traces the influence of a training dataset on the model's performance.
We propose a more scalable approach, UnTrac-Inv, which unlearns a test dataset and evaluates the unlearned model on training datasets.
arXiv Detail & Related papers (2024-01-26T23:17:31Z) - Has Your Pretrained Model Improved? A Multi-head Posterior Based
Approach [25.927323251675386]
We leverage the meta-features associated with each entity as a source of worldly knowledge and employ entity representations from the models.
We propose using the consistency between these representations and the meta-features as a metric for evaluating pre-trained models.
Our method's effectiveness is demonstrated across various domains, including models with relational datasets, large language models and image models.
arXiv Detail & Related papers (2024-01-02T17:08:26Z) - Learn to Unlearn for Deep Neural Networks: Minimizing Unlearning
Interference with Gradient Projection [56.292071534857946]
Recent data-privacy laws have sparked interest in machine unlearning.
Challenge is to discard information about the forget'' data without altering knowledge about remaining dataset.
We adopt a projected-gradient based learning method, named as Projected-Gradient Unlearning (PGU)
We provide empirically evidence to demonstrate that our unlearning method can produce models that behave similar to models retrained from scratch across various metrics even when the training dataset is no longer accessible.
arXiv Detail & Related papers (2023-12-07T07:17:24Z) - A Simple and Efficient Baseline for Data Attribution on Images [107.12337511216228]
Current state-of-the-art approaches require a large ensemble of as many as 300,000 models to accurately attribute model predictions.
In this work, we focus on a minimalist baseline, utilizing the feature space of a backbone pretrained via self-supervised learning to perform data attribution.
Our method is model-agnostic and scales easily to large datasets.
arXiv Detail & Related papers (2023-11-03T17:29:46Z) - Dataless Knowledge Fusion by Merging Weights of Language Models [51.8162883997512]
Fine-tuning pre-trained language models has become the prevalent paradigm for building downstream NLP models.
This creates a barrier to fusing knowledge across individual models to yield a better single model.
We propose a dataless knowledge fusion method that merges models in their parameter space.
arXiv Detail & Related papers (2022-12-19T20:46:43Z) - Revealing Secrets From Pre-trained Models [2.0249686991196123]
Transfer-learning has been widely adopted in many emerging deep learning algorithms.
We show that pre-trained models and fine-tuned models have significantly high similarities in weight values.
We propose a new model extraction attack that reveals the model architecture and the pre-trained model used by the black-box victim model.
arXiv Detail & Related papers (2022-07-19T20:19:03Z) - It's the Best Only When It Fits You Most: Finding Related Models for
Serving Based on Dynamic Locality Sensitive Hashing [1.581913948762905]
Preparation of training data is often a bottleneck in the lifecycle of deploying a deep learning model for production or research.
This paper proposes an end-to-end process of searching related models for serving based on the similarity of the target dataset and the training datasets of the available models.
arXiv Detail & Related papers (2020-10-13T22:52:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.