Privacy-Aware Multi-Device Cooperative Edge Inference with Distributed Resource Bidding
- URL: http://arxiv.org/abs/2412.21069v1
- Date: Mon, 30 Dec 2024 16:37:17 GMT
- Title: Privacy-Aware Multi-Device Cooperative Edge Inference with Distributed Resource Bidding
- Authors: Wenhao Zhuang, Yuyi Mao,
- Abstract summary: Mobile edge computing (MEC) has empowered mobile devices (MDs) in supporting artificial intelligence (AI) applications.
Despite the great promise of device-edge cooperative AI inference, data privacy becomes an increasing concern.
We develop a privacy-aware multi-device cooperative edge inference system for classification tasks.
- Score: 3.9287497907611875
- License:
- Abstract: Mobile edge computing (MEC) has empowered mobile devices (MDs) in supporting artificial intelligence (AI) applications through collaborative efforts with proximal MEC servers. Unfortunately, despite the great promise of device-edge cooperative AI inference, data privacy becomes an increasing concern. In this paper, we develop a privacy-aware multi-device cooperative edge inference system for classification tasks, which integrates a distributed bidding mechanism for the MEC server's computational resources. Intermediate feature compression is adopted as a principled approach to minimize data privacy leakage. To determine the bidding values and feature compression ratios in a distributed fashion, we formulate a decentralized partially observable Markov decision process (DEC-POMDP) model, for which, a multi-agent deep deterministic policy gradient (MADDPG)-based algorithm is developed. Simulation results demonstrate the effectiveness of the proposed algorithm in privacy-preserving cooperative edge inference. Specifically, given a sufficient level of data privacy protection, the proposed algorithm achieves 0.31-0.95% improvements in classification accuracy compared to the approach being agnostic to the wireless channel conditions. The performance is further enhanced by 1.54-1.67% by considering the difficulties of inference data.
Related papers
- Federated PCA and Estimation for Spiked Covariance Matrices: Optimal Rates and Efficient Algorithm [19.673557166734977]
Federated Learning (FL) has gained significant recent attention in machine learning for its enhanced privacy and data security.
This paper investigates federated PCA and estimation for spiked covariance matrices under distributed differential privacy constraints.
We establish minimax rates of convergence, with a key finding that the central server's optimal rate is the harmonic mean of the local clients' minimax rates.
arXiv Detail & Related papers (2024-11-23T21:57:50Z) - Breaking the Communication-Privacy-Accuracy Tradeoff with
$f$-Differential Privacy [51.11280118806893]
We consider a federated data analytics problem in which a server coordinates the collaborative data analysis of multiple users with privacy concerns and limited communication capability.
We study the local differential privacy guarantees of discrete-valued mechanisms with finite output space through the lens of $f$-differential privacy (DP)
More specifically, we advance the existing literature by deriving tight $f$-DP guarantees for a variety of discrete-valued mechanisms.
arXiv Detail & Related papers (2023-02-19T16:58:53Z) - Differentially Private Deep Q-Learning for Pattern Privacy Preservation
in MEC Offloading [76.0572817182483]
attackers may eavesdrop on the offloading decisions to infer the edge server's (ES's) queue information and users' usage patterns.
We propose an offloading strategy which jointly minimizes the latency, ES's energy consumption, and task dropping rate, while preserving pattern privacy (PP)
We develop a Differential Privacy Deep Q-learning based Offloading (DP-DQO) algorithm to solve this problem while addressing the PP issue by injecting noise into the generated offloading decisions.
arXiv Detail & Related papers (2023-02-09T12:50:18Z) - Task-Oriented Sensing, Computation, and Communication Integration for
Multi-Device Edge AI [108.08079323459822]
This paper studies a new multi-intelligent edge artificial-latency (AI) system, which jointly exploits the AI model split inference and integrated sensing and communication (ISAC)
We measure the inference accuracy by adopting an approximate but tractable metric, namely discriminant gain.
arXiv Detail & Related papers (2022-07-03T06:57:07Z) - Decentralized Stochastic Optimization with Inherent Privacy Protection [103.62463469366557]
Decentralized optimization is the basic building block of modern collaborative machine learning, distributed estimation and control, and large-scale sensing.
Since involved data, privacy protection has become an increasingly pressing need in the implementation of decentralized optimization algorithms.
arXiv Detail & Related papers (2022-05-08T14:38:23Z) - Secure Distributed/Federated Learning: Prediction-Privacy Trade-Off for
Multi-Agent System [4.190359509901197]
In the big data era, performing inference within the distributed and federated learning (DL and FL) frameworks, the central server needs to process a large amount of data.
Considering the decentralized computing topology, privacy has become a first-class concern.
We study the textitprivacy-aware server to multi-agent assignment problem subject to information processing constraints associated with each agent.
arXiv Detail & Related papers (2022-04-24T19:19:20Z) - Distributed Reinforcement Learning for Privacy-Preserving Dynamic Edge
Caching [91.50631418179331]
A privacy-preserving distributed deep policy gradient (P2D3PG) is proposed to maximize the cache hit rates of devices in the MEC networks.
We convert the distributed optimizations into model-free Markov decision process problems and then introduce a privacy-preserving federated learning method for popularity prediction.
arXiv Detail & Related papers (2021-10-20T02:48:27Z) - Identity-Aware Attribute Recognition via Real-Time Distributed Inference
in Mobile Edge Clouds [53.07042574352251]
We design novel models for pedestrian attribute recognition with re-ID in an MEC-enabled camera monitoring system.
We propose a novel inference framework with a set of distributed modules, by jointly considering the attribute recognition and person re-ID.
We then devise a learning-based algorithm for the distributions of the modules of the proposed distributed inference framework.
arXiv Detail & Related papers (2020-08-12T12:03:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.