Edicho: Consistent Image Editing in the Wild
- URL: http://arxiv.org/abs/2412.21079v3
- Date: Tue, 14 Jan 2025 08:23:30 GMT
- Title: Edicho: Consistent Image Editing in the Wild
- Authors: Qingyan Bai, Hao Ouyang, Yinghao Xu, Qiuyu Wang, Ceyuan Yang, Ka Leong Cheng, Yujun Shen, Qifeng Chen,
- Abstract summary: Edicho steps in with a training-free solution based on diffusion models.
It features a fundamental design principle of using explicit image correspondence to direct editing.
- Score: 90.42395533938915
- License:
- Abstract: As a verified need, consistent editing across in-the-wild images remains a technical challenge arising from various unmanageable factors, like object poses, lighting conditions, and photography environments. Edicho steps in with a training-free solution based on diffusion models, featuring a fundamental design principle of using explicit image correspondence to direct editing. Specifically, the key components include an attention manipulation module and a carefully refined classifier-free guidance (CFG) denoising strategy, both of which take into account the pre-estimated correspondence. Such an inference-time algorithm enjoys a plug-and-play nature and is compatible to most diffusion-based editing methods, such as ControlNet and BrushNet. Extensive results demonstrate the efficacy of Edicho in consistent cross-image editing under diverse settings. We will release the code to facilitate future studies.
Related papers
- PartEdit: Fine-Grained Image Editing using Pre-Trained Diffusion Models [80.98455219375862]
We present the first text-based image editing approach for object parts based on pre-trained diffusion models.
Our approach is preferred by users 77-90% of the time in conducted user studies.
arXiv Detail & Related papers (2025-02-06T13:08:43Z) - UIP2P: Unsupervised Instruction-based Image Editing via Cycle Edit Consistency [69.33072075580483]
We propose an unsupervised model for instruction-based image editing that eliminates the need for ground-truth edited images during training.
Our method addresses these challenges by introducing a novel editing mechanism called Cycle Edit Consistency ( CEC)
CEC applies forward and backward edits in one training step and enforces consistency in image and attention spaces.
arXiv Detail & Related papers (2024-12-19T18:59:58Z) - BrushEdit: All-In-One Image Inpainting and Editing [79.55816192146762]
BrushEdit is a novel inpainting-based instruction-guided image editing paradigm.
We devise a system enabling free-form instruction editing by integrating MLLMs and a dual-branch image inpainting model.
Our framework effectively combines MLLMs and inpainting models, achieving superior performance across seven metrics.
arXiv Detail & Related papers (2024-12-13T17:58:06Z) - FreeDiff: Progressive Frequency Truncation for Image Editing with Diffusion Models [44.26371926512843]
We introduce a novel free approach that employs progressive $textbfFre$qu$textbfe$ncy truncation to refine the guidance of $textbfDiff$usion models for universal editing tasks.
Our method achieves comparable results with state-of-the-art methods across a variety of editing tasks and on a diverse set of images.
arXiv Detail & Related papers (2024-04-18T04:47:28Z) - Diffusion Model-Based Image Editing: A Survey [46.244266782108234]
Denoising diffusion models have emerged as a powerful tool for various image generation and editing tasks.
We provide an exhaustive overview of existing methods using diffusion models for image editing.
To further evaluate the performance of text-guided image editing algorithms, we propose a systematic benchmark, EditEval.
arXiv Detail & Related papers (2024-02-27T14:07:09Z) - AdapEdit: Spatio-Temporal Guided Adaptive Editing Algorithm for
Text-Based Continuity-Sensitive Image Editing [24.9487669818162]
We propose atemporal guided adaptive editing algorithm AdapEdit, which realizes adaptive image editing.
Our approach has a significant advantage in preserving model priors and does not require model training, fine-tuning extra data, or optimization.
We present our results over a wide variety of raw images and editing instructions, demonstrating competitive performance and showing it significantly outperforms the previous approaches.
arXiv Detail & Related papers (2023-12-13T09:45:58Z) - Direct Inversion: Boosting Diffusion-based Editing with 3 Lines of Code [19.988947272980848]
"Direct Inversion" is a novel technique achieving optimal performance of both branches with just three lines of code.
We present PIE-Bench, an editing benchmark with 700 images showcasing diverse scenes and editing types.
Compared to state-of-the-art optimization-based inversion techniques, our solution not only yields superior performance across 8 editing methods but also achieves nearly an order of speed-up.
arXiv Detail & Related papers (2023-10-02T18:01:55Z) - DragDiffusion: Harnessing Diffusion Models for Interactive Point-based Image Editing [94.24479528298252]
DragGAN is an interactive point-based image editing framework that achieves impressive editing results with pixel-level precision.
By harnessing large-scale pretrained diffusion models, we greatly enhance the applicability of interactive point-based editing on both real and diffusion-generated images.
We present a challenging benchmark dataset called DragBench to evaluate the performance of interactive point-based image editing methods.
arXiv Detail & Related papers (2023-06-26T06:04:09Z) - End-to-End Visual Editing with a Generatively Pre-Trained Artist [78.5922562526874]
We consider the targeted image editing problem: blending a region in a source image with a driver image that specifies the desired change.
We propose a self-supervised approach that simulates edits by augmenting off-the-shelf images in a target domain.
We show that different blending effects can be learned by an intuitive control of the augmentation process, with no other changes required to the model architecture.
arXiv Detail & Related papers (2022-05-03T17:59:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.