Adversarial Attack and Defense for LoRa Device Identification and Authentication via Deep Learning
- URL: http://arxiv.org/abs/2412.21164v1
- Date: Mon, 30 Dec 2024 18:43:21 GMT
- Title: Adversarial Attack and Defense for LoRa Device Identification and Authentication via Deep Learning
- Authors: Yalin E. Sagduyu, Tugba Erpek,
- Abstract summary: Concerns persist regarding the security of LoRa networks.
This paper focuses on two critical tasks, namely (i) identifying LoRa devices and (ii) classifying them to legitimate and rogue devices.
Deep neural networks (DNNs), encompassing both convolutional and feedforward neural networks, are trained for these tasks.
- Score: 6.241494296494434
- License:
- Abstract: LoRa provides long-range, energy-efficient communications in Internet of Things (IoT) applications that rely on Low-Power Wide-Area Network (LPWAN) capabilities. Despite these merits, concerns persist regarding the security of LoRa networks, especially in situations where device identification and authentication are imperative to secure the reliable access to the LoRa networks. This paper explores a deep learning (DL) approach to tackle these concerns, focusing on two critical tasks, namely (i) identifying LoRa devices and (ii) classifying them to legitimate and rogue devices. Deep neural networks (DNNs), encompassing both convolutional and feedforward neural networks, are trained for these tasks using actual LoRa signal data. In this setting, the adversaries may spoof rogue LoRa signals through the kernel density estimation (KDE) method based on legitimate device signals that are received by the adversaries. Two cases are considered, (i) training two separate classifiers, one for each of the two tasks, and (ii) training a multi-task classifier for both tasks. The vulnerabilities of the resulting DNNs to manipulations in input samples are studied in form of untargeted and targeted adversarial attacks using the Fast Gradient Sign Method (FGSM). Individual and common perturbations are considered against single-task and multi-task classifiers for the LoRa signal analysis. To provide resilience against such attacks, a defense approach is presented by increasing the robustness of classifiers with adversarial training. Results quantify how vulnerable LoRa signal classification tasks are to adversarial attacks and emphasize the need to fortify IoT applications against these subtle yet effective threats.
Related papers
- Multi-Objective Reinforcement Learning for Automated Resilient Cyber Defence [0.0]
Cyber-attacks pose a security threat to military command and control networks, Intelligence, Surveillance, and Reconnaissance (ISR) systems, and civilian critical national infrastructure.
The use of artificial intelligence and autonomous agents in these attacks increases the scale, range, and complexity of this threat and the subsequent disruption they cause.
Autonomous Cyber Defence (ACD) agents aim to mitigate this threat by responding at machine speed and at the scale required to address the problem.
arXiv Detail & Related papers (2024-11-26T16:51:52Z) - Efficient Adversarial Training in LLMs with Continuous Attacks [99.5882845458567]
Large language models (LLMs) are vulnerable to adversarial attacks that can bypass their safety guardrails.
We propose a fast adversarial training algorithm (C-AdvUL) composed of two losses.
C-AdvIPO is an adversarial variant of IPO that does not require utility data for adversarially robust alignment.
arXiv Detail & Related papers (2024-05-24T14:20:09Z) - Adversarial Attacks on LoRa Device Identification and Rogue Signal
Detection with Deep Learning [7.373498690601958]
This paper studies a deep learning framework to address LoRa device identification and legitimate vs. rogue LoRa device classification tasks.
Fast Gradient Sign Method (FGSM)-based adversarial attacks are considered for LoRa signal classification tasks using deep learning models.
Results presented in this paper quantify the level of transferability of adversarial attacks on different LoRa signal classification tasks as a major vulnerability.
arXiv Detail & Related papers (2023-12-27T20:49:28Z) - Towards Adversarial Realism and Robust Learning for IoT Intrusion
Detection and Classification [0.0]
The Internet of Things (IoT) faces tremendous security challenges.
The increasing threat posed by adversarial attacks restates the need for reliable defense strategies.
This work describes the types of constraints required for an adversarial cyber-attack example to be realistic.
arXiv Detail & Related papers (2023-01-30T18:00:28Z) - Downlink Power Allocation in Massive MIMO via Deep Learning: Adversarial
Attacks and Training [62.77129284830945]
This paper considers a regression problem in a wireless setting and shows that adversarial attacks can break the DL-based approach.
We also analyze the effectiveness of adversarial training as a defensive technique in adversarial settings and show that the robustness of DL-based wireless system against attacks improves significantly.
arXiv Detail & Related papers (2022-06-14T04:55:11Z) - NetSentry: A Deep Learning Approach to Detecting Incipient Large-scale
Network Attacks [9.194664029847019]
We show how to use Machine Learning for Network Intrusion Detection (NID) in a principled way.
We propose NetSentry, perhaps the first of its kind NIDS that builds on Bi-ALSTM, an original ensemble of sequential neural models.
We demonstrate F1 score gains above 33% over the state-of-the-art, as well as up to 3 times higher rates of detecting attacks such as XSS and web bruteforce.
arXiv Detail & Related papers (2022-02-20T17:41:02Z) - Increasing the Confidence of Deep Neural Networks by Coverage Analysis [71.57324258813674]
This paper presents a lightweight monitoring architecture based on coverage paradigms to enhance the model against different unsafe inputs.
Experimental results show that the proposed approach is effective in detecting both powerful adversarial examples and out-of-distribution inputs.
arXiv Detail & Related papers (2021-01-28T16:38:26Z) - Adversarial Attacks on Deep Learning Based Power Allocation in a Massive
MIMO Network [62.77129284830945]
We show that adversarial attacks can break DL-based power allocation in the downlink of a massive multiple-input-multiple-output (maMIMO) network.
We benchmark the performance of these attacks and show that with a small perturbation in the input of the neural network (NN), the white-box attacks can result in infeasible solutions up to 86%.
arXiv Detail & Related papers (2021-01-28T16:18:19Z) - Open-set Adversarial Defense [93.25058425356694]
We show that open-set recognition systems are vulnerable to adversarial attacks.
Motivated by this observation, we emphasize the need of an Open-Set Adrial Defense (OSAD) mechanism.
This paper proposes an Open-Set Defense Network (OSDN) as a solution to the OSAD problem.
arXiv Detail & Related papers (2020-09-02T04:35:33Z) - Learn2Perturb: an End-to-end Feature Perturbation Learning to Improve
Adversarial Robustness [79.47619798416194]
Learn2Perturb is an end-to-end feature perturbation learning approach for improving the adversarial robustness of deep neural networks.
Inspired by the Expectation-Maximization, an alternating back-propagation training algorithm is introduced to train the network and noise parameters consecutively.
arXiv Detail & Related papers (2020-03-02T18:27:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.