Multi-Objective Reinforcement Learning for Automated Resilient Cyber Defence
- URL: http://arxiv.org/abs/2411.17585v1
- Date: Tue, 26 Nov 2024 16:51:52 GMT
- Title: Multi-Objective Reinforcement Learning for Automated Resilient Cyber Defence
- Authors: Ross O'Driscoll, Claudia Hagen, Joe Bater, James M. Adams,
- Abstract summary: Cyber-attacks pose a security threat to military command and control networks, Intelligence, Surveillance, and Reconnaissance (ISR) systems, and civilian critical national infrastructure.
The use of artificial intelligence and autonomous agents in these attacks increases the scale, range, and complexity of this threat and the subsequent disruption they cause.
Autonomous Cyber Defence (ACD) agents aim to mitigate this threat by responding at machine speed and at the scale required to address the problem.
- Score: 0.0
- License:
- Abstract: Cyber-attacks pose a security threat to military command and control networks, Intelligence, Surveillance, and Reconnaissance (ISR) systems, and civilian critical national infrastructure. The use of artificial intelligence and autonomous agents in these attacks increases the scale, range, and complexity of this threat and the subsequent disruption they cause. Autonomous Cyber Defence (ACD) agents aim to mitigate this threat by responding at machine speed and at the scale required to address the problem. Sequential decision-making algorithms such as Deep Reinforcement Learning (RL) provide a promising route to create ACD agents. These algorithms focus on a single objective such as minimizing the intrusion of red agents on the network, by using a handcrafted weighted sum of rewards. This approach removes the ability to adapt the model during inference, and fails to address the many competing objectives present when operating and protecting these networks. Conflicting objectives, such as restoring a machine from a back-up image, must be carefully balanced with the cost of associated down-time, or the disruption to network traffic or services that might result. Instead of pursing a Single-Objective RL (SORL) approach, here we present a simple example of a multi-objective network defence game that requires consideration of both defending the network against red-agents and maintaining critical functionality of green-agents. Two Multi-Objective Reinforcement Learning (MORL) algorithms, namely Multi-Objective Proximal Policy Optimization (MOPPO), and Pareto-Conditioned Networks (PCN), are used to create two trained ACD agents whose performance is compared on our Multi-Objective Cyber Defence game. The benefits and limitations of MORL ACD agents in comparison to SORL ACD agents are discussed based on the investigations of this game.
Related papers
- Robust Defense Against Extreme Grid Events Using Dual-Policy Reinforcement Learning Agents [0.0]
Reinforcement learning (RL) agents are powerful tools for managing power grids.
They use large amounts of data to inform their actions and receive rewards as feedback to learn favorable responses for the system.
This ability is especially valuable in decarbonizing power networks, where the demand for RL agents is increasing.
arXiv Detail & Related papers (2024-11-17T21:30:48Z) - Hierarchical Multi-agent Reinforcement Learning for Cyber Network Defense [7.967738380932909]
We propose a hierarchical Proximal Policy Optimization (PPO) architecture that decomposes the cyber defense task into specific sub-tasks like network investigation and host recovery.
Our approach involves training sub-policies for each sub-task using PPO enhanced with domain expertise.
These sub-policies are then leveraged by a master defense policy that coordinates their selection to solve complex network defense tasks.
arXiv Detail & Related papers (2024-10-22T18:35:05Z) - Multi-Agent Actor-Critics in Autonomous Cyber Defense [0.5261718469769447]
Multi-Agent Deep Reinforcement Learning (MADRL) presents a promising approach to enhancing the efficacy and resilience of autonomous cyber operations.
We demonstrate each agent is able to learn quickly and counter act on the threats autonomously using MADRL in simulated cyber-attack scenarios.
arXiv Detail & Related papers (2024-10-11T15:15:09Z) - Practical Adversarial Attacks Against AI-Driven Power Allocation in a
Distributed MIMO Network [0.0]
In distributed multiple-input multiple-output (D-MIMO) networks, power control is crucial to optimize the spectral efficiencies of users.
Deep neural network based artificial intelligence (AI) solutions are proposed to decrease the complexity.
In this work, we show that threats against the target AI model which might be originated from malicious users or radio units can substantially decrease the network performance.
arXiv Detail & Related papers (2023-01-23T07:51:25Z) - Artificial Intelligence Empowered Multiple Access for Ultra Reliable and
Low Latency THz Wireless Networks [76.89730672544216]
Terahertz (THz) wireless networks are expected to catalyze the beyond fifth generation (B5G) era.
To satisfy the ultra-reliability and low-latency demands of several B5G applications, novel mobility management approaches are required.
This article presents a holistic MAC layer approach that enables intelligent user association and resource allocation, as well as flexible and adaptive mobility management.
arXiv Detail & Related papers (2022-08-17T03:00:24Z) - Downlink Power Allocation in Massive MIMO via Deep Learning: Adversarial
Attacks and Training [62.77129284830945]
This paper considers a regression problem in a wireless setting and shows that adversarial attacks can break the DL-based approach.
We also analyze the effectiveness of adversarial training as a defensive technique in adversarial settings and show that the robustness of DL-based wireless system against attacks improves significantly.
arXiv Detail & Related papers (2022-06-14T04:55:11Z) - Optimization for Master-UAV-powered Auxiliary-Aerial-IRS-assisted IoT
Networks: An Option-based Multi-agent Hierarchical Deep Reinforcement
Learning Approach [56.84948632954274]
This paper investigates a master unmanned aerial vehicle (MUAV)-powered Internet of Things (IoT) network.
We propose using a rechargeable auxiliary UAV (AUAV) equipped with an intelligent reflecting surface (IRS) to enhance the communication signals from the MUAV.
Under the proposed model, we investigate the optimal collaboration strategy of these energy-limited UAVs to maximize the accumulated throughput of the IoT network.
arXiv Detail & Related papers (2021-12-20T15:45:28Z) - Fixed Points in Cyber Space: Rethinking Optimal Evasion Attacks in the
Age of AI-NIDS [70.60975663021952]
We study blackbox adversarial attacks on network classifiers.
We argue that attacker-defender fixed points are themselves general-sum games with complex phase transitions.
We show that a continual learning approach is required to study attacker-defender dynamics.
arXiv Detail & Related papers (2021-11-23T23:42:16Z) - Semantic-Aware Collaborative Deep Reinforcement Learning Over Wireless
Cellular Networks [82.02891936174221]
Collaborative deep reinforcement learning (CDRL) algorithms in which multiple agents can coordinate over a wireless network is a promising approach.
In this paper, a novel semantic-aware CDRL method is proposed to enable a group of untrained agents with semantically-linked DRL tasks to collaborate efficiently across a resource-constrained wireless cellular network.
arXiv Detail & Related papers (2021-11-23T18:24:47Z) - Autonomous Attack Mitigation for Industrial Control Systems [25.894883701063055]
Defending computer networks from cyber attack requires timely responses to alerts and threat intelligence.
We present a deep reinforcement learning approach to autonomous response and recovery in large industrial control networks.
arXiv Detail & Related papers (2021-11-03T18:08:06Z) - The Feasibility and Inevitability of Stealth Attacks [63.14766152741211]
We study new adversarial perturbations that enable an attacker to gain control over decisions in generic Artificial Intelligence systems.
In contrast to adversarial data modification, the attack mechanism we consider here involves alterations to the AI system itself.
arXiv Detail & Related papers (2021-06-26T10:50:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.