Sparse chaos in cortical circuits
- URL: http://arxiv.org/abs/2412.21188v1
- Date: Mon, 30 Dec 2024 18:55:35 GMT
- Title: Sparse chaos in cortical circuits
- Authors: Rainer Engelken, Michael Monteforte, Fred Wolf,
- Abstract summary: We show that basic features of nerve impulse generation profoundly affect collective chaos in neuronal circuits.
We find a drastic reduction in the number of unstable manifold, Kolmogorov-Sinai entropy, and attractor dimension.
In cortical circuits, biophysical properties appear tuned to this regime of sparse chaos.
- Score: 3.4137115855910767
- License:
- Abstract: Nerve impulses, the currency of information flow in the brain, are generated by an instability of the neuronal membrane potential dynamics. Neuronal circuits exhibit collective chaos that appears essential for learning, memory, sensory processing, and motor control. However, the factors controlling the nature and intensity of collective chaos in neuronal circuits are not well understood. Here we use computational ergodic theory to demonstrate that basic features of nerve impulse generation profoundly affect collective chaos in neuronal circuits. Numerically exact calculations of Lyapunov spectra, Kolmogorov-Sinai-entropy, and upper and lower bounds on attractor dimension show that changes in nerve impulse generation in individual neurons moderately impact information encoding rates but qualitatively transform phase space structure. Specifically, we find a drastic reduction in the number of unstable manifolds, Kolmogorov-Sinai entropy, and attractor dimension. Beyond a critical point, marked by the simultaneous breakdown of the diffusion approximation, a peak in the largest Lyapunov exponent, and a localization transition of the leading covariant Lyapunov vector, networks exhibit sparse chaos: prolonged periods of near stable dynamics interrupted by short bursts of intense chaos. Analysis of large, more realistically structured networks supports the generality of these findings. In cortical circuits, biophysical properties appear tuned to this regime of sparse chaos. Our results reveal a close link between fundamental aspects of single-neuron biophysics and the collective dynamics of cortical circuits, suggesting that nerve impulse generation mechanisms are adapted to enhance circuit controllability and information flow.
Related papers
- Artificial Kuramoto Oscillatory Neurons [65.16453738828672]
It has long been known in both neuroscience and AI that ''binding'' between neurons leads to a form of competitive learning.
We introduce Artificial rethinking together with arbitrary connectivity designs such as fully connected convolutional, or attentive mechanisms.
We show that this idea provides performance improvements across a wide spectrum of tasks such as unsupervised object discovery, adversarial robustness, uncertainty, and reasoning.
arXiv Detail & Related papers (2024-10-17T17:47:54Z) - Confidence Regulation Neurons in Language Models [91.90337752432075]
This study investigates the mechanisms by which large language models represent and regulate uncertainty in next-token predictions.
Entropy neurons are characterized by an unusually high weight norm and influence the final layer normalization (LayerNorm) scale to effectively scale down the logits.
token frequency neurons, which we describe here for the first time, boost or suppress each token's logit proportionally to its log frequency, thereby shifting the output distribution towards or away from the unigram distribution.
arXiv Detail & Related papers (2024-06-24T01:31:03Z) - Approximating nonlinear functions with latent boundaries in low-rank
excitatory-inhibitory spiking networks [5.955727366271805]
We put forth a new framework for spike-based excitatory-inhibitory spiking networks.
Our work proposes a new perspective on spiking networks that may serve as a starting point for a mechanistic understanding of biological spike-based computation.
arXiv Detail & Related papers (2023-07-18T15:17:00Z) - Theory of coupled neuronal-synaptic dynamics [3.626013617212667]
In neural circuits, synaptic strengths influence neuronal activity by shaping network dynamics.
We study a recurrent-network model in which neuronal units and synaptic couplings are interacting dynamic variables.
We show that adding Hebbian plasticity slows activity in chaotic networks and can induce chaos.
arXiv Detail & Related papers (2023-02-17T16:42:59Z) - Spiking neural network for nonlinear regression [68.8204255655161]
Spiking neural networks carry the potential for a massive reduction in memory and energy consumption.
They introduce temporal and neuronal sparsity, which can be exploited by next-generation neuromorphic hardware.
A framework for regression using spiking neural networks is proposed.
arXiv Detail & Related papers (2022-10-06T13:04:45Z) - Cross-Frequency Coupling Increases Memory Capacity in Oscillatory Neural
Networks [69.42260428921436]
Cross-frequency coupling (CFC) is associated with information integration across populations of neurons.
We construct a model of CFC which predicts a computational role for observed $theta - gamma$ oscillatory circuits in the hippocampus and cortex.
We show that the presence of CFC increases the memory capacity of a population of neurons connected by plastic synapses.
arXiv Detail & Related papers (2022-04-05T17:13:36Z) - Latent Equilibrium: A unified learning theory for arbitrarily fast
computation with arbitrarily slow neurons [0.7340017786387767]
We introduce Latent Equilibrium, a new framework for inference and learning in networks of slow components.
We derive disentangled neuron and synapse dynamics from a prospective energy function.
We show how our principle can be applied to detailed models of cortical microcircuitry.
arXiv Detail & Related papers (2021-10-27T16:15:55Z) - Intrinsic mechanisms for drive-dependent Purcell decay in
superconducting quantum circuits [68.8204255655161]
We find that in a wide range of settings, the cavity-qubit detuning controls whether a non-zero photonic population increases or decreases qubit decay Purcell.
Our method combines insights from a Keldysh treatment of the system, and Lindblad theory.
arXiv Detail & Related papers (2021-06-09T16:21:31Z) - The distribution of inhibitory neurons in the C. elegans connectome
facilitates self-optimization of coordinated neural activity [78.15296214629433]
The nervous system of the nematode Caenorhabditis elegans exhibits remarkable complexity despite the worm's small size.
A general challenge is to better understand the relationship between neural organization and neural activity at the system level.
We implemented an abstract simulation model of the C. elegans connectome that approximates the neurotransmitter identity of each neuron.
arXiv Detail & Related papers (2020-10-28T23:11:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.