論文の概要: Relation-Aware Equivariant Graph Networks for Epitope-Unknown Antibody Design and Specificity Optimization
- arxiv url: http://arxiv.org/abs/2501.00013v1
- Date: Sat, 14 Dec 2024 03:00:44 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-05 21:40:42.245707
- Title: Relation-Aware Equivariant Graph Networks for Epitope-Unknown Antibody Design and Specificity Optimization
- Title(参考訳): エピトープ未知の抗体設計と特異性最適化のための関係対応同変グラフネットワーク
- Authors: Lirong Wu, Haitao Lin, Yufei Huang, Zhangyang Gao, Cheng Tan, Yunfan Liu, Tailin Wu, Stan Z. Li,
- Abstract要約: 本稿では,抗原特異的CDRの構造と共同設計配列に対する抗原抗体相互作用をモデル化するRAADフレームワークを提案する。
さらに, 抗体特異度をよりよく測定し, 抗体特異度を最適化するコントラスト特異的エンハンス制約を開発するための新しい評価指標を提案する。
- 参考スコア(独自算出の注目度): 61.06622479173572
- License:
- Abstract: Antibodies are Y-shaped proteins that protect the host by binding to specific antigens, and their binding is mainly determined by the Complementary Determining Regions (CDRs) in the antibody. Despite the great progress made in CDR design, existing computational methods still encounter several challenges: 1) poor capability of modeling complex CDRs with long sequences due to insufficient contextual information; 2) conditioned on pre-given antigenic epitopes and their static interaction with the target antibody; 3) neglect of specificity during antibody optimization leads to non-specific antibodies. In this paper, we take into account a variety of node features, edge features, and edge relations to include more contextual and geometric information. We propose a novel Relation-Aware Antibody Design (RAAD) framework, which dynamically models antigen-antibody interactions for co-designing the sequences and structures of antigen-specific CDRs. Furthermore, we propose a new evaluation metric to better measure antibody specificity and develop a contrasting specificity-enhancing constraint to optimize the specificity of antibodies. Extensive experiments have demonstrated the superior capability of RAAD in terms of antibody modeling, generation, and optimization across different CDR types, sequence lengths, pre-training strategies, and input contexts.
- Abstract(参考訳): 抗体は特定の抗原に結合することで宿主を保護するY型タンパク質であり、その結合は主に抗体中の補体決定領域(CDR)によって決定される。
CDR設計の進歩にもかかわらず、既存の計算手法にはいくつかの課題がある。
1) 文脈情報不足による複雑なCDRを長いシーケンスでモデル化する能力の低さ。
2)先天抗原エピトープと標的抗体との静的相互作用を条件とした。
3) 抗体最適化時の特異性の無視は非特異性抗体につながる。
本稿では,より文脈的・幾何学的情報を含む様々なノード特徴,エッジ特徴,エッジ関係について考察する。
本稿では,抗原特異的CDRの配列と構造を協調設計するために,抗原と抗体の相互作用を動的にモデル化するRAADフレームワークを提案する。
さらに, 抗体特異度をよりよく測定し, 抗体特異度を最適化するコントラスト特異的エンハンス制約を開発するための新しい評価指標を提案する。
大規模実験は、様々なCDRタイプ、配列長、事前学習戦略、入力コンテキストにおける抗体モデリング、生成、最適化の観点から、RAADの優れた能力を実証している。
関連論文リスト
- Antigen-Specific Antibody Design via Direct Energy-based Preference Optimization [51.28231365213679]
我々は,抗原特異的抗体配列構造共設計を,特定の嗜好に対する最適化問題として取り組んだ。
そこで本研究では,有理構造と抗原への結合親和性の両方を有する抗体の生成を誘導する,直接エネルギーに基づく選好最適化を提案する。
論文 参考訳(メタデータ) (2024-03-25T09:41:49Z) - A Hierarchical Training Paradigm for Antibody Structure-sequence
Co-design [54.30457372514873]
抗体配列構造共設計のための階層的訓練パラダイム(HTP)を提案する。
HTPは4段階の訓練段階から構成され、それぞれが特定のタンパク質のモダリティに対応する。
実証実験により、HTPは共同設計問題において新しい最先端性能を設定できることが示されている。
論文 参考訳(メタデータ) (2023-10-30T02:39:15Z) - AbODE: Ab Initio Antibody Design using Conjoined ODEs [8.523238510909955]
我々は、文脈情報と外部インタラクションの両方に対応するためにグラフPDEを拡張した新しい生成モデルAbODEを開発した。
我々は,AbODEと時間ネットワーク,およびグラフマッチングネットワークの基本的な関係を明らかにする。
論文 参考訳(メタデータ) (2023-05-31T14:40:47Z) - Cross-Gate MLP with Protein Complex Invariant Embedding is A One-Shot
Antibody Designer [58.97153056120193]
抗体の特異性は、その相補性決定領域(CDR)によって決定される
従来の研究では、複雑な技術を使ってCDRを生成するが、不適切な幾何学的モデリングに悩まされている。
本稿では,CDRの1次元配列と3次元構造を1ショットで共設計できるテクスタイスシンプルで効果的なモデルを提案する。
論文 参考訳(メタデータ) (2023-04-21T13:24:26Z) - xTrimoABFold: De novo Antibody Structure Prediction without MSA [77.47606749555686]
我々は、抗体配列から抗体構造を予測するために、xTrimoABFoldという新しいモデルを開発した。
CDRにおけるドメイン特異的焦点損失のアンサンブル損失とフレーム整合点損失を最小化することにより,PDBの抗体構造をエンドツーエンドにトレーニングした。
論文 参考訳(メタデータ) (2022-11-30T09:26:08Z) - Incorporating Pre-training Paradigm for Antibody Sequence-Structure
Co-design [134.65287929316673]
深層学習に基づく計算抗体の設計は、人間の経験を補完する可能性のあるデータから自動的に抗体パターンをマイニングするので、注目を集めている。
計算手法は高品質な抗体構造データに大きく依存しており、非常に限定的である。
幸いなことに、CDRをモデル化し、構造データへの依存を軽減するために有効な抗体の配列データが多数存在する。
論文 参考訳(メタデータ) (2022-10-26T15:31:36Z) - Conditional Antibody Design as 3D Equivariant Graph Translation [28.199522831859998]
我々は,CDRの1次元配列と3次元構造を共設計するためのマルチチャネル等価アテンションネットワーク(MEAN)を提案する。
本手法は, 配列および構造モデリング, 抗原結合型CDR設計, 結合親和性最適化における最先端モデルを大幅に超えている。
論文 参考訳(メタデータ) (2022-08-12T01:00:59Z) - Iterative Refinement Graph Neural Network for Antibody
Sequence-Structure Co-design [35.215029426177004]
そこで本研究では,結合特異性や中和機能を増強した抗体を自動設計する生成モデルを提案する。
本手法は,SARS-CoV-2ウイルスを中和可能な抗体の設計において,テストセット上で優れたログライクレーションを実現し,過去のベースラインよりも優れていた。
論文 参考訳(メタデータ) (2021-10-09T18:23:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。