Highly Optimized Kernels and Fine-Grained Codebooks for LLM Inference on Arm CPUs
- URL: http://arxiv.org/abs/2501.00032v1
- Date: Mon, 23 Dec 2024 03:44:29 GMT
- Title: Highly Optimized Kernels and Fine-Grained Codebooks for LLM Inference on Arm CPUs
- Authors: Dibakar Gope, David Mansell, Danny Loh, Ian Bratt,
- Abstract summary: Large language models (LLMs) have transformed the way we think about language understanding and generation.
Group quantization formats commonly used for LLM quantization have significant compute overheads and a resource-intensive dequantization process.
We present a groupwise non-uniform codebook-based quantization method for ultra-low-precision quantization of LLMs to better match non-uniform patterns in their weight distributions.
- Score: 0.8217552831952
- License:
- Abstract: Large language models (LLMs) have transformed the way we think about language understanding and generation, enthralling both researchers and developers. However, deploying LLMs for inference has been a significant challenge due to their unprecedented size and resource requirements. While quantizing model weights to sub-byte precision has emerged as a promising solution to ease memory pressure, the group quantization formats commonly used for LLM quantization have significant compute overheads and a resource-intensive dequantization process. As a result, a higher proportion of compute instructions do not perform multiplies, i.e., real work, rendering them unsuitable for meeting the required latency requirements for LLMs deployed on commodity CPUs. In this work, we propose a set of highly optimized kernels to accelerate LLM inference and unleash the full potential of CPUs, particularly Arm CPUs. These kernels amortize the cost of loading the operands and the cost of weight unpacking across multiple output rows. This, along with the introduction of an optimized interleaved group data layout for weights and decompression path optimizations to reduce unnecessary operations and dequantization overhead while maximizing the use of vector and matrix multiply operations, significantly improves the efficiency of MAC operations. Furthermore, we present a groupwise non-uniform codebook-based quantization method for ultra-low-precision quantization of LLMs to better match non-uniform patterns in their weight distributions, demonstrating better throughput during token generation while ensuring better quality than the state-of-the-art. Applying these improvements to 4-bit LLMs results in a 3-3.2x improvement in prompt processing and a 2x improvement in autoregressive decoding on Arm CPUs, compared to LLaMA.cpp-based solution. The optimized kernels are available at https://github.com/ggerganov/llama.cpp.
Related papers
- Progressive Mixed-Precision Decoding for Efficient LLM Inference [49.05448842542558]
We introduce Progressive Mixed-Precision Decoding (PMPD) to address the memory-boundedness of decoding.
PMPD achieves 1.4$-$12.2$times$ speedup in matrix-vector multiplications over fp16 models.
Our approach delivers a throughput gain of 3.8$-$8.0$times$ over fp16 models and up to 1.54$times$ over uniform quantization approaches.
arXiv Detail & Related papers (2024-10-17T11:46:33Z) - Efficient Arbitrary Precision Acceleration for Large Language Models on GPU Tensor Cores [3.6385567224218556]
Large language models (LLMs) have been widely applied but face challenges in efficient inference.
We introduce a novel bipolar-INT data format that facilitates parallel computing and supports symmetric quantization.
We implement an arbitrary precision matrix multiplication scheme that decomposes and recovers at the bit level, enabling flexible precision.
arXiv Detail & Related papers (2024-09-26T14:17:58Z) - Search for Efficient Large Language Models [52.98684997131108]
Large Language Models (LLMs) have long held sway in the realms of artificial intelligence research.
Weight pruning, quantization, and distillation have been embraced to compress LLMs, targeting memory reduction and inference acceleration.
Most model compression techniques concentrate on weight optimization, overlooking the exploration of optimal architectures.
arXiv Detail & Related papers (2024-09-25T21:32:12Z) - Tender: Accelerating Large Language Models via Tensor Decomposition and Runtime Requantization [0.6445087473595953]
Large language models (LLMs) demonstrate outstanding performance in various tasks in machine learning.
deploying LLM inference poses challenges due to the high compute and memory requirements.
We present Tender, an algorithm-hardware co-design solution that enables efficient deployment of LLM inference at low precision.
arXiv Detail & Related papers (2024-06-16T09:51:55Z) - Enabling High-Sparsity Foundational Llama Models with Efficient Pretraining and Deployment [56.44025052765861]
Large language models (LLMs) have revolutionized Natural Language Processing (NLP), but their size creates computational bottlenecks.
We introduce a novel approach to create accurate, sparse foundational versions of performant LLMs.
We show a total speedup on CPUs for sparse-quantized LLaMA models of up to 8.6x.
arXiv Detail & Related papers (2024-05-06T16:03:32Z) - BiLLM: Pushing the Limit of Post-Training Quantization for LLMs [53.31402059062365]
BiLLM is a groundbreaking 1-bit post-training quantization scheme tailored for pretrained large language models.
It achieves for the first time high-accuracy inference (e.g. 8.41 perplexity on LLaMA2-70B) with only 1.08-bit weights across various LLMs families.
arXiv Detail & Related papers (2024-02-06T09:26:34Z) - Extreme Compression of Large Language Models via Additive Quantization [59.3122859349777]
Our algorithm, called AQLM, generalizes the classic Additive Quantization (AQ) approach for information retrieval.
We provide fast GPU and CPU implementations of AQLM for token generation, which enable us to match or outperform optimized FP16 implementations for speed.
arXiv Detail & Related papers (2024-01-11T18:54:44Z) - Efficient LLM Inference on CPUs [8.802223672775844]
Large language models (LLMs) have demonstrated remarkable performance and tremendous potential across a wide range of tasks.
deploying these models has been challenging due to the astronomical amount of model parameters.
We propose an effective approach that can make the deployment of LLMs more efficiently.
arXiv Detail & Related papers (2023-11-01T13:08:50Z) - SqueezeLLM: Dense-and-Sparse Quantization [80.32162537942138]
Main bottleneck for generative inference with LLMs is memory bandwidth, rather than compute, for single batch inference.
We introduce SqueezeLLM, a post-training quantization framework that enables lossless compression to ultra-low precisions of up to 3-bit.
Our framework incorporates two novel ideas: (i) sensitivity-based non-uniform quantization, which searches for the optimal bit precision assignment based on second-order information; and (ii) the Dense-and-Sparse decomposition that stores outliers and sensitive weight values in an efficient sparse format.
arXiv Detail & Related papers (2023-06-13T08:57:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.