Transforming CCTV cameras into NO$_2$ sensors at city scale for adaptive policymaking
- URL: http://arxiv.org/abs/2501.00056v1
- Date: Sat, 28 Dec 2024 13:01:44 GMT
- Title: Transforming CCTV cameras into NO$_2$ sensors at city scale for adaptive policymaking
- Authors: Mohamed R. Ibrahim, Terry Lyons,
- Abstract summary: We show how city CCTV cameras can act as pseudo-NOtextsubscript2 sensors.
Our analysis of London's mobility patterns unveiled criticaltemporal connections, showing how specific traffic patterns affect NOtextsubscript2 levels.
These findings cast doubt on the efficacy of some of the urban policies currently being implemented to reduce pollution.
- Score: 5.217870815854702
- License:
- Abstract: Air pollution in cities, especially NO\textsubscript{2}, is linked to numerous health problems, ranging from mortality to mental health challenges and attention deficits in children. While cities globally have initiated policies to curtail emissions, real-time monitoring remains challenging due to limited environmental sensors and their inconsistent distribution. This gap hinders the creation of adaptive urban policies that respond to the sequence of events and daily activities affecting pollution in cities. Here, we demonstrate how city CCTV cameras can act as a pseudo-NO\textsubscript{2} sensors. Using a predictive graph deep model, we utilised traffic flow from London's cameras in addition to environmental and spatial factors, generating NO\textsubscript{2} predictions from over 133 million frames. Our analysis of London's mobility patterns unveiled critical spatiotemporal connections, showing how specific traffic patterns affect NO\textsubscript{2} levels, sometimes with temporal lags of up to 6 hours. For instance, if trucks only drive at night, their effects on NO\textsubscript{2} levels are most likely to be seen in the morning when people commute. These findings cast doubt on the efficacy of some of the urban policies currently being implemented to reduce pollution. By leveraging existing camera infrastructure and our introduced methods, city planners and policymakers could cost-effectively monitor and mitigate the impact of NO\textsubscript{2} and other pollutants.
Related papers
- Back to the Future: GNN-based NO$_2$ Forecasting via Future Covariates [49.93577170464313]
We deal with air quality observations in a city-wide network of ground monitoring stations.
We propose a conditioning block that embeds past and future covariates into the current observations.
We find that conditioning on future weather information has a greater impact than considering past traffic conditions.
arXiv Detail & Related papers (2024-04-08T09:13:16Z) - Wireless Crowd Detection for Smart Overtourism Mitigation [50.031356998422815]
This chapter describes a low-cost approach to monitoring overtourism based on mobile devices' wireless activity.
The crowding sensors count the number of surrounding mobile devices, by detecting trace elements of wireless technologies.
They run detection programs for several technologies, and fingerprinting analysis results are only stored locally in an anonymized database.
arXiv Detail & Related papers (2024-02-14T13:20:24Z) - Causally Aware Generative Adversarial Networks for Light Pollution
Control [17.823594255913594]
Excessive illumination can lead to light pollution, posing non-negligible threats to economic burdens, ecosystems, and human health.
We introduce a novel framework named Causally Aware Generative Adversarial Networks (CAGAN)
This innovative approach aims to uncover the fundamental drivers of light pollution within cities and offer intelligent solutions for optimal illumination resource allocation.
arXiv Detail & Related papers (2024-01-12T08:57:20Z) - Deep Reinforcement Learning-based Intelligent Traffic Signal Controls
with Optimized CO2 emissions [6.851243292023835]
Transportation networks face the challenge of sub-optimal control policies that can have adverse effects on human health, the environment, and contribute to traffic congestion.
Despite several adaptive traffic signal controllers in literature, limited research has been conducted on their comparative performance.
We propose EcoLight, a reward shaping scheme for reinforcement learning algorithms that not only reduces CO2 emissions but also achieves competitive results in metrics such as travel time.
arXiv Detail & Related papers (2023-10-19T19:54:47Z) - Self-supervised learning unveils change in urban housing from
street-level images [2.0971479389679337]
Street2Vec embeds urban structure while being invariant to seasonal and daily changes without manual annotations.
It identified point-level change in London's housing supply from street-level images, and distinguished between major and minor change.
This capability can provide timely information for urban planning and policy decisions toward more liveable, equitable, and sustainable cities.
arXiv Detail & Related papers (2023-09-20T14:35:23Z) - City-scale Pollution Aware Traffic Routing by Sampling Max Flows using
MCMC [8.301939401602233]
Long-term exposure to severe pollution can cause serious health issues.
We design a pollution-aware traffic routing policy using diverse samples and simulated traffic on real-world road maps.
We observe a considerable decrease in areas with severe pollution when experimented with maps of large cities across the world compared to other approaches.
arXiv Detail & Related papers (2023-02-28T09:40:37Z) - Spatial-Temporal Hypergraph Self-Supervised Learning for Crime
Prediction [60.508960752148454]
This work proposes a Spatial-Temporal Hypergraph Self-Supervised Learning framework to tackle the label scarcity issue in crime prediction.
We propose the cross-region hypergraph structure learning to encode region-wise crime dependency under the entire urban space.
We also design the dual-stage self-supervised learning paradigm, to not only jointly capture local- and global-level spatial-temporal crime patterns, but also supplement the sparse crime representation by augmenting region self-discrimination.
arXiv Detail & Related papers (2022-04-18T23:46:01Z) - IMPACT: Integrated Bottom-Up Greenhouse Gas Emission Pathways for Cities [0.0]
IMPACT pathways integrate technology adoption policies with zoning policies, climate change, and grid decarbonization scenarios.
We identify an emission premium for sprawling and show that adverse policy combinations exist that can exhibit rebounding emissions over time.
arXiv Detail & Related papers (2022-01-31T02:30:39Z) - METEOR: A Massive Dense & Heterogeneous Behavior Dataset for Autonomous
Driving [42.69638782267657]
We present a new and complex traffic dataset, METEOR, which captures traffic patterns in unstructured scenarios in India.
METEOR consists of more than 1000 one-minute video clips, over 2 million annotated frames with ego-vehicle trajectories, and more than 13 million bounding boxes for surrounding vehicles or traffic agents.
We use our novel dataset to evaluate the performance of object detection and behavior prediction algorithms.
arXiv Detail & Related papers (2021-09-16T01:01:55Z) - Transportation Density Reduction Caused by City Lockdowns Across the
World during the COVID-19 Epidemic: From the View of High-resolution Remote
Sensing Imagery [48.52477000522933]
The COVID-19 epidemic began to worsen in the first months of 2020.
stringent lockdown policies were implemented in numerous cities throughout the world to control human transmission and mitigate its spread.
We provide a quantitative investigation of the transportation density reduction before and after lockdown was implemented in six epicenter cities.
arXiv Detail & Related papers (2021-03-02T13:45:16Z) - Safety-Oriented Pedestrian Motion and Scene Occupancy Forecasting [91.69900691029908]
We advocate for predicting both the individual motions as well as the scene occupancy map.
We propose a Scene-Actor Graph Neural Network (SA-GNN) which preserves the relative spatial information of pedestrians.
On two large-scale real-world datasets, we showcase that our scene-occupancy predictions are more accurate and better calibrated than those from state-of-the-art motion forecasting methods.
arXiv Detail & Related papers (2021-01-07T06:08:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.