City-scale Pollution Aware Traffic Routing by Sampling Max Flows using
MCMC
- URL: http://arxiv.org/abs/2302.14442v1
- Date: Tue, 28 Feb 2023 09:40:37 GMT
- Title: City-scale Pollution Aware Traffic Routing by Sampling Max Flows using
MCMC
- Authors: Shreevignesh Suriyanarayanan, Praveen Paruchuri, Girish Varma
- Abstract summary: Long-term exposure to severe pollution can cause serious health issues.
We design a pollution-aware traffic routing policy using diverse samples and simulated traffic on real-world road maps.
We observe a considerable decrease in areas with severe pollution when experimented with maps of large cities across the world compared to other approaches.
- Score: 8.301939401602233
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A significant cause of air pollution in urban areas worldwide is the high
volume of road traffic. Long-term exposure to severe pollution can cause
serious health issues. One approach towards tackling this problem is to design
a pollution-aware traffic routing policy that balances multiple objectives of
i) avoiding extreme pollution in any area ii) enabling short transit times, and
iii) making effective use of the road capacities. We propose a novel
sampling-based approach for this problem. We provide the first construction of
a Markov Chain that can sample integer max flow solutions of a planar graph,
with theoretical guarantees that the probabilities depend on the aggregate
transit length. We designed a traffic policy using diverse samples and
simulated traffic on real-world road maps using the SUMO traffic simulator. We
observe a considerable decrease in areas with severe pollution when
experimented with maps of large cities across the world compared to other
approaches.
Related papers
- Improving Traffic Flow Predictions with SGCN-LSTM: A Hybrid Model for Spatial and Temporal Dependencies [55.2480439325792]
This paper introduces the Signal-Enhanced Graph Convolutional Network Long Short Term Memory (SGCN-LSTM) model for predicting traffic speeds across road networks.
Experiments on the PEMS-BAY road network traffic dataset demonstrate the SGCN-LSTM model's effectiveness.
arXiv Detail & Related papers (2024-11-01T00:37:00Z) - A Holistic Framework Towards Vision-based Traffic Signal Control with
Microscopic Simulation [53.39174966020085]
Traffic signal control (TSC) is crucial for reducing traffic congestion that leads to smoother traffic flow, reduced idling time, and mitigated CO2 emissions.
In this study, we explore the computer vision approach for TSC that modulates on-road traffic flows through visual observation.
We introduce a holistic traffic simulation framework called TrafficDojo towards vision-based TSC and its benchmarking.
arXiv Detail & Related papers (2024-03-11T16:42:29Z) - Deep Reinforcement Learning-based Intelligent Traffic Signal Controls
with Optimized CO2 emissions [6.851243292023835]
Transportation networks face the challenge of sub-optimal control policies that can have adverse effects on human health, the environment, and contribute to traffic congestion.
Despite several adaptive traffic signal controllers in literature, limited research has been conducted on their comparative performance.
We propose EcoLight, a reward shaping scheme for reinforcement learning algorithms that not only reduces CO2 emissions but also achieves competitive results in metrics such as travel time.
arXiv Detail & Related papers (2023-10-19T19:54:47Z) - Uncertainty Quantification for Image-based Traffic Prediction across
Cities [63.136794104678025]
Uncertainty quantification (UQ) methods provide an approach to induce probabilistic reasoning.
We investigate their application to a large-scale image-based traffic dataset spanning multiple cities.
We find that our approach can capture both temporal and spatial effects on traffic behaviour in a representative case study for the city of Moscow.
arXiv Detail & Related papers (2023-08-11T13:35:52Z) - DenseLight: Efficient Control for Large-scale Traffic Signals with Dense
Feedback [109.84667902348498]
Traffic Signal Control (TSC) aims to reduce the average travel time of vehicles in a road network.
Most prior TSC methods leverage deep reinforcement learning to search for a control policy.
We propose DenseLight, a novel RL-based TSC method that employs an unbiased reward function to provide dense feedback on policy effectiveness.
arXiv Detail & Related papers (2023-06-13T05:58:57Z) - Deep Reinforcement Learning to Maximize Arterial Usage during Extreme
Congestion [4.934817254755007]
We propose a Deep Reinforcement Learning (DRL) approach to reduce traffic congestion on multi-lane freeways during extreme congestion.
Agent is trained to learn adaptive detouring strategies for congested freeway traffic.
Agent can improve average traffic speed by 21% when compared to no-action during steep congestion.
arXiv Detail & Related papers (2023-05-16T16:53:27Z) - Leveraging Neo4j and deep learning for traffic congestion simulation &
optimization [0.0]
We show how traffic propagates backward in case of congestion or accident scenarios and its overall impact on other segments of the roads.
We also train a sequential RNN-LSTM (Long Short-Term Memory) deep learning model on the real-time traffic data to assess the accuracy of simulation results based on a road-specific congestion.
arXiv Detail & Related papers (2023-04-01T01:23:10Z) - Automated Quantification of Traffic Particulate Emissions via an Image
Analysis Pipeline [0.0]
We propose and implement an integrated machine learning pipeline that utilizes traffic images to obtain vehicular counts.
We verify the utility and accuracy of this pipeline on an open-source dataset of traffic images obtained for a location in Singapore.
The roadside particulate emission is observed to correlate well with obtained vehicular counts with a correlation coefficient of 0.93, indicating that this method can indeed serve as a quick and effective correlate of particulate emissions.
arXiv Detail & Related papers (2022-11-24T07:48:29Z) - Road Network Guided Fine-Grained Urban Traffic Flow Inference [108.64631590347352]
Accurate inference of fine-grained traffic flow from coarse-grained one is an emerging yet crucial problem.
We propose a novel Road-Aware Traffic Flow Magnifier (RATFM) that exploits the prior knowledge of road networks.
Our method can generate high-quality fine-grained traffic flow maps.
arXiv Detail & Related papers (2021-09-29T07:51:49Z) - An Experimental Urban Case Study with Various Data Sources and a Model
for Traffic Estimation [65.28133251370055]
We organize an experimental campaign with video measurement in an area within the urban network of Zurich, Switzerland.
We focus on capturing the traffic state in terms of traffic flow and travel times by ensuring measurements from established thermal cameras.
We propose a simple yet efficient Multiple Linear Regression (MLR) model to estimate travel times with fusion of various data sources.
arXiv Detail & Related papers (2021-08-02T08:13:57Z) - An IoT-Based System: Big Urban Traffic Data Mining Through Airborne
Pollutant Gases Analysis [0.0]
In developing countries such as Iran, the number of vehicles is increasing due to growing population.
It is necessary to control traffic congestion by traffic police officers, expand paths efficiently and choose the best way for decreasing the traffic by citizens.
Todays, many traffic organization services such as traffic police officer and urban traffic control system use traffic cameras, inductive sensors, satellite images, radar sensors, ultrasonic technology and radio-frequency identification (RFID) for urban traffic diagnosis.
Our method suggested in this article detects traffic congestion based on IOT containing a smart system that gives us traffic congestion by calculating the air pollution amount in that
arXiv Detail & Related papers (2020-02-15T13:04:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.