論文の概要: "Generative Models for Financial Time Series Data: Enhancing Signal-to-Noise Ratio and Addressing Data Scarcity in A-Share Market
- arxiv url: http://arxiv.org/abs/2501.00063v1
- Date: Sun, 29 Dec 2024 09:35:23 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-05 17:16:19.808118
- Title: "Generative Models for Financial Time Series Data: Enhancing Signal-to-Noise Ratio and Addressing Data Scarcity in A-Share Market
- Title(参考訳): 金融時系列データ生成モデル:Aシェア市場における信号対雑音比の強化とデータスカルシティへの対応
- Authors: Guangming Che,
- Abstract要約: ストックデータを合成するための2つの生成モデルに基づくアプローチを示す。
第1の方法は、中国A株市場におけるさまざまな分野の株式の特徴を分類することで、株価データの信号対雑音比を高める。
第2の方法は、上場期間が短い株と、それに相当する限られた会社でデータを合成するように設計されている。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: The financial industry is increasingly seeking robust methods to address the challenges posed by data scarcity and low signal-to-noise ratios, which limit the application of deep learning techniques in stock market analysis. This paper presents two innovative generative model-based approaches to synthesize stock data, specifically tailored for different scenarios within the A-share market in China. The first method, a sector-based synthesis approach, enhances the signal-to-noise ratio of stock data by classifying the characteristics of stocks from various sectors in China's A-share market. This method employs an Approximate Non-Local Total Variation algorithm to smooth the generated data, a bandpass filtering method based on Fourier Transform to eliminate noise, and Denoising Diffusion Implicit Models to accelerate sampling speed. The second method, a recursive stock data synthesis approach based on pattern recognition, is designed to synthesize data for stocks with short listing periods and limited comparable companies. It leverages pattern recognition techniques and Markov models to learn and generate variable-length stock sequences, while introducing a sub-time-level data augmentation method to alleviate data scarcity issues.We validate the effectiveness of these methods through extensive experiments on various datasets, including those from the main board, STAR Market, Growth Enterprise Market Board, Beijing Stock Exchange, NASDAQ, NYSE, and AMEX. The results demonstrate that our synthesized data not only improve the performance of predictive models but also enhance the signal-to-noise ratio of individual stock signals in price trading strategies. Furthermore, the introduction of sub-time-level data significantly improves the quality of synthesized data.
- Abstract(参考訳): 金融業界は、データ不足と低信号対雑音比によって引き起こされる課題に対処するための堅牢な方法を模索している。
本稿では、中国におけるAシェア市場におけるさまざまなシナリオに特化して、ストックデータを合成するための、2つの革新的な生成モデルに基づくアプローチを提案する。
第1の手法であるセクターベースの合成手法は、中国A株市場におけるさまざまな分野の株式の特徴を分類することで、株価データの信号-雑音比を高める。
本手法では、生成したデータをスムースにするための近似非局所トータル変分法、ノイズを除去するフーリエ変換に基づく帯域通過フィルタリング法、サンプリング速度を高速化する拡散インプリシットモデルを提案する。
第2の方法は、パターン認識に基づく再帰的ストックデータ合成アプローチであり、短時間の上場期間と限られた類似企業によるストックデータの合成を目的としている。
パターン認識技術とマルコフモデルを用いて変動長ストックシーケンスを学習・生成し、データ不足を緩和するサブタイムレベルのデータ拡張手法を導入し、本店、STARマーケット、グロースエンタープライズマーケットボード、北京証券取引所、NASDAQ、NYSE、AMEXなどのさまざまなデータセット上で、これらの手法の有効性を検証する。
その結果, 合成したデータは, 予測モデルの性能の向上だけでなく, 価格取引戦略における個々の株価信号の信号-雑音比の向上も示している。
さらに、サブタイムレベルのデータの導入により、合成データの品質が大幅に向上する。
関連論文リスト
- A Two-Stage Federated Learning Approach for Industrial Prognostics Using Large-Scale High-Dimensional Signals [1.2277343096128712]
産業統計学は、アセットからの高次元劣化信号を利用して、その故障時間を予測するデータ駆動手法を開発することを目的としている。
実際には、個々の組織は信頼できる予測モデルを独立して訓練するのに十分なデータを持っていないことが多い。
本稿では,複数の組織が共同で予後モデルを訓練できる統計的学習に基づくフェデレーションモデルを提案する。
論文 参考訳(メタデータ) (2024-10-14T21:26:22Z) - An Evaluation of Deep Learning Models for Stock Market Trend Prediction [0.3277163122167433]
本研究では,S&P 500指数とブラジルETF EWZの日時閉値を用いた短期トレンド予測のための先進的なディープラーニングモデルの有効性について検討した。
時系列予測に最適化されたxLSTM適応であるxLSTM-TSモデルを導入する。
テストされたモデルの中で、xLSTM-TSは一貫して他のモデルよりも優れており、例えば、テスト精度72.82%、F1スコア73.16%をEWZの日次データセットで達成している。
論文 参考訳(メタデータ) (2024-08-22T13:58:55Z) - Statistical arbitrage in multi-pair trading strategy based on graph clustering algorithms in US equities market [0.0]
本研究は,グラフクラスタリングアルゴリズムに基づく統計仲裁の新しい枠組みに基づく効果的な戦略の開発を目指す。
この研究は、最適な信号検出とリスク管理のための統合的なアプローチを提供することを目指している。
論文 参考訳(メタデータ) (2024-06-15T17:25:32Z) - An Aggregation-Free Federated Learning for Tackling Data Heterogeneity [50.44021981013037]
フェデレートラーニング(FL)は、分散データセットからの知識を活用する効果に頼っている。
従来のFLメソッドでは、クライアントが前回のトレーニングラウンドからサーバが集約したグローバルモデルに基づいてローカルモデルを更新するアグリゲート-then-adaptフレームワークを採用している。
我々は,新しいアグリゲーションフリーFLアルゴリズムであるFedAFを紹介する。
論文 参考訳(メタデータ) (2024-04-29T05:55:23Z) - Stochastic Amortization: A Unified Approach to Accelerate Feature and Data Attribution [62.71425232332837]
雑音ラベル付きモデルを用いたトレーニングは安価で驚くほど効果的であることを示す。
このアプローチは、いくつかの特徴属性とデータ評価手法を著しく加速し、しばしば既存のアプローチよりも桁違いにスピードアップする。
論文 参考訳(メタデータ) (2024-01-29T03:42:37Z) - A Novel Deep Reinforcement Learning Based Automated Stock Trading System
Using Cascaded LSTM Networks [3.593955557310285]
そこで我々は,まずLSTMを用いて日次データから時系列特徴を抽出し,抽出した特徴を訓練エージェントに供給する,DRLベースの株式取引システムを提案する。
米国の市場におけるDJIと中国の株式市場におけるSSE50の実験は、当社のモデルが累積リターンとシャープ比で従来のベースラインモデルを上回っていることを示している。
論文 参考訳(メタデータ) (2022-12-06T03:22:06Z) - Augmented Bilinear Network for Incremental Multi-Stock Time-Series
Classification [83.23129279407271]
本稿では,有価証券のセットで事前学習したニューラルネットワークで利用可能な知識を効率的に保持する手法を提案する。
本手法では,既存の接続を固定することにより,事前学習したニューラルネットワークに符号化された事前知識を維持する。
この知識は、新しいデータを用いて最適化された一連の拡張接続によって、新しい証券に対して調整される。
論文 参考訳(メタデータ) (2022-07-23T18:54:10Z) - Decision Forest Based EMG Signal Classification with Low Volume Dataset
Augmented with Random Variance Gaussian Noise [51.76329821186873]
我々は6種類の手振りを限定的なサンプル数で分類できるモデルを作成し、より広い聴衆によく一般化する。
信号のランダムなバウンドの使用など、より基本的な手法のセットにアピールするが、これらの手法がオンライン環境で持てる力を示したいと考えている。
論文 参考訳(メタデータ) (2022-06-29T23:22:18Z) - DEALIO: Data-Efficient Adversarial Learning for Imitation from
Observation [57.358212277226315]
観察ifoからの模倣学習において、学習エージェントは、実演者の生成した制御信号にアクセスせずに、実演行動の観察のみを用いて実演エージェントを模倣しようとする。
近年、逆模倣学習に基づく手法は、ifO問題に対する最先端のパフォーマンスをもたらすが、データ非効率でモデルなしの強化学習アルゴリズムに依存するため、サンプルの複雑さに悩まされることが多い。
この問題は、サンプルの収集が時間、エネルギー、およびリスクの面で高いコストを被る可能性がある現実世界の設定に展開することは非現実的です。
よりデータ効率の高いifOアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-03-31T23:46:32Z) - Adaptive Weighting Scheme for Automatic Time-Series Data Augmentation [79.47771259100674]
データ拡張のための2つのサンプル適応自動重み付けスキームを提案する。
提案手法を大規模でノイズの多い財務データセットとUCRアーカイブからの時系列データセット上で検証する。
金融データセットでは、取引戦略と組み合わせた手法が50 $%$以上の年間収益の改善につながることを示し、時系列データでは、データセットの半分以上で最新モデルを上回るパフォーマンスを発揮し、他のものと同様の精度を達成しています。
論文 参考訳(メタデータ) (2021-02-16T17:50:51Z) - Wavelet Denoising and Attention-based RNN-ARIMA Model to Predict Forex
Price [0.30458514384586405]
ARIMA(Autoregressive Integrated Average)は,ウェーブレットのデノイング,アテンションベースリカレントニューラルネットワーク(ARNN),自動回帰統合型インテグレート・アベレージ・アベレージ(ARIMA)を統合した新しい手法を提案する。
USD/JPYの5分間データに対する実験は,ベースライン法よりも優れている。
論文 参考訳(メタデータ) (2020-08-16T05:32:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。