論文の概要: Can Large Language Models Improve SE Active Learning via Warm-Starts?
- arxiv url: http://arxiv.org/abs/2501.00125v1
- Date: Mon, 30 Dec 2024 19:58:13 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-05 17:16:05.984764
- Title: Can Large Language Models Improve SE Active Learning via Warm-Starts?
- Title(参考訳): 大規模言語モデルはワームスターによるSEアクティブラーニングを改善するか?
- Authors: Lohith Senthilkumar, Tim Menzies,
- Abstract要約: アクティブラーナー」は、データの小さなサンプルから学んだモデルを使用して、ラベル付けの次に最も有益な例を見つけます。
本稿では,温暖化開始のためのLarge Language Models (LLM) の利用について検討する。
49のSEタスクにおいて、LLM生成したウォームスタートは低次元および中次元タスクの性能を大幅に改善した。
- 参考スコア(独自算出の注目度): 11.166755101891402
- License:
- Abstract: When SE data is scarce, "active learners" use models learned from tiny samples of the data to find the next most informative example to label. In this way, effective models can be generated using very little data. For multi-objective software engineering (SE) tasks, active learning can benefit from an effective set of initial guesses (also known as "warm starts"). This paper explores the use of Large Language Models (LLMs) for creating warm-starts. Those results are compared against Gaussian Process Models and Tree of Parzen Estimators. For 49 SE tasks, LLM-generated warm starts significantly improved the performance of low- and medium-dimensional tasks. However, LLM effectiveness diminishes in high-dimensional problems, where Bayesian methods like Gaussian Process Models perform best.
- Abstract(参考訳): SEデータが不足している場合、"アクティブラーナー"は、データの小さなサンプルから学んだモデルを使用して、ラベル付けする上で最も有益な例を見つけます。
このようにして、非常に小さなデータを使って効果的なモデルを生成することができる。
多目的ソフトウェアエンジニアリング(SE)タスクでは、アクティブラーニングは、効果的な初期推測(ウォームスタートとも呼ばれる)のセットから恩恵を受けることができる。
本稿では,温暖化開始のためのLarge Language Models (LLM) の利用について検討する。
これらの結果はガウス過程モデルとパーズン推定器のツリーと比較される。
49のSEタスクにおいて、LLM生成したウォームスタートは低次元および中次元タスクの性能を大幅に改善した。
しかし、LLMの有効性はガウス過程モデルのようなベイズ的手法が最適であるような高次元問題では低下する。
関連論文リスト
- Forewarned is Forearmed: Leveraging LLMs for Data Synthesis through Failure-Inducing Exploration [90.41908331897639]
大規模言語モデル(LLM)は、多種多様な高品質なタスク特化データのトレーニングの恩恵を受けている。
本稿では,効果的なトレーニングサンプルを自動生成する新しい手法であるReverseGenを提案する。
論文 参考訳(メタデータ) (2024-10-22T06:43:28Z) - Cookbook: A framework for improving LLM generative abilities via programmatic data generating templates [57.29125360837203]
Cookbookはランダムトークン上の単純なパターンからなるトレーニングデータを生成するフレームワークである。
クックブック生成したデータの微調整により,対応するタスクの性能を最大52.7の精度で向上できることがわかった。
論文 参考訳(メタデータ) (2024-10-07T17:29:40Z) - LLMaAA: Making Large Language Models as Active Annotators [32.57011151031332]
本稿では,大規模な言語モデルをアノテータとして利用し,それをアクティブな学習ループに配置して,アノテートを効率的に行うLLMaAAを提案する。
我々は、エンティティ認識と関係抽出という、2つの古典的NLPタスクの実験と分析を行う。
LLMaAAでは、LLM生成ラベルからトレーニングされたタスク固有のモデルが、数百の注釈付きサンプルで教師より優れている。
論文 参考訳(メタデータ) (2023-10-30T14:54:15Z) - LLM-augmented Preference Learning from Natural Language [19.700169351688768]
大規模言語モデル(LLM)は、より大きな文脈長を扱う。
LLM は、ターゲットテキストが大きければ SotA を一貫して上回る。
ゼロショット学習よりもパフォーマンスが向上する。
論文 参考訳(メタデータ) (2023-10-12T17:17:27Z) - BaSAL: Size-Balanced Warm Start Active Learning for LiDAR Semantic
Segmentation [2.9290232815049926]
既存のアクティブな学習方法は、LiDARセマンティックセグメンテーションデータセットに固有の深刻なクラス不均衡を見落としている。
本研究では,各オブジェクトクラスが特徴的サイズであることを示す観測結果に基づいて,サイズバランスの取れたウォームスタートアクティブラーニングモデルBaSALを提案する。
その結果,初期モデルの性能を大きなマージンで改善できることが示唆された。
論文 参考訳(メタデータ) (2023-10-12T05:03:19Z) - Language models are weak learners [71.33837923104808]
本研究では,プロンプトベースの大規模言語モデルは弱い学習者として効果的に動作可能であることを示す。
これらのモデルをブースティングアプローチに組み込むことで、モデル内の知識を活用して、従来のツリーベースのブースティングよりも優れています。
結果は、プロンプトベースのLLMが、少数の学習者だけでなく、より大きな機械学習パイプラインのコンポーネントとして機能する可能性を示している。
論文 参考訳(メタデータ) (2023-06-25T02:39:19Z) - Active Code Learning: Benchmarking Sample-Efficient Training of Code
Models [35.54965391159943]
ソフトウェアエンジニアリング(ML4Code)では、人的労力の少ないコードのモデルを効率的にトレーニングすることが、緊急の問題となっている。
アクティブな学習は、開発者が望ましいパフォーマンスでモデルを生成しながら、少ないデータでモデルをトレーニングすることを可能にするようなテクニックです。
本稿は、この重要な問題であるアクティブコード学習を研究するための最初のベンチマークを構築します。
論文 参考訳(メタデータ) (2023-06-02T03:26:11Z) - Distilling Step-by-Step! Outperforming Larger Language Models with Less
Training Data and Smaller Model Sizes [91.58845026796149]
大規模言語モデルを上回る小さなモデルを訓練する新しいメカニズムであるDistilling Step-by-stepを導入する。
4つのNLPベンチマークで3つの結果を得た。
論文 参考訳(メタデータ) (2023-05-03T17:50:56Z) - Model-Agnostic Multitask Fine-tuning for Few-shot Vision-Language
Transfer Learning [59.38343286807997]
未知タスクの視覚言語モデルのためのモデル非依存型マルチタスクファインチューニング(MAMF)を提案する。
モデルに依存しないメタラーニング(MAML)と比較して、MAMFは二段階最適化を捨て、一階勾配のみを使用する。
MAMFは5つのベンチマークデータセット上で、数ショットの転送学習において古典的な微調整法よりも一貫して優れていることを示す。
論文 参考訳(メタデータ) (2022-03-09T17:26:53Z) - SSSE: Efficiently Erasing Samples from Trained Machine Learning Models [103.43466657962242]
サンプル消去のための効率的かつ効率的なアルゴリズムSSSEを提案する。
ある場合、SSSEは、許可されたデータだけで新しいモデルをスクラッチからトレーニングする最適な、しかし実用的でない金の標準と同様に、サンプルをほぼ消去することができる。
論文 参考訳(メタデータ) (2021-07-08T14:17:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。