GroverGPT: A Large Language Model with 8 Billion Parameters for Quantum Searching
- URL: http://arxiv.org/abs/2501.00135v4
- Date: Fri, 14 Feb 2025 04:00:08 GMT
- Title: GroverGPT: A Large Language Model with 8 Billion Parameters for Quantum Searching
- Authors: Haoran Wang, Pingzhi Li, Min Chen, Jinglei Cheng, Junyu Liu, Tianlong Chen,
- Abstract summary: We explore the potential of leveraging Large Language Models to simulate the output of a quantum Turing machine.
A specialized model, GroverGPT, trained on over 15 trillion tokens.
It consistently outperformed OpenAI's GPT-4o (45% accuracy), achieving nearly 100% accuracy on 6- and 10-qubit datasets.
It also demonstrated strong generalization, surpassing 95% accuracy for systems with over 20 qubits when trained on 3- to 6-qubit data.
- Score: 43.496857395654764
- License:
- Abstract: Quantum computing is an exciting non-Von Neumann paradigm, offering provable speedups over classical computing for specific problems. However, the practical limits of classical simulatability for quantum circuits remain unclear, especially with current noisy quantum devices. In this work, we explore the potential of leveraging Large Language Models (LLMs) to simulate the output of a quantum Turing machine using Grover's quantum circuits, known to provide quadratic speedups over classical counterparts. To this end, we developed GroverGPT, a specialized model based on LLaMA's 8-billion-parameter architecture, trained on over 15 trillion tokens. Unlike brute-force state-vector simulations, which demand substantial computational resources, GroverGPT employs pattern recognition to approximate quantum search algorithms without explicitly representing quantum states. Analyzing 97K quantum search instances, GroverGPT consistently outperformed OpenAI's GPT-4o (45\% accuracy), achieving nearly 100\% accuracy on 6- and 10-qubit datasets when trained on 4-qubit or larger datasets. It also demonstrated strong generalization, surpassing 95\% accuracy for systems with over 20 qubits when trained on 3- to 6-qubit data. Analysis indicates GroverGPT captures quantum features of Grover's search rather than classical patterns, supported by novel prompting strategies to enhance performance. Although accuracy declines with increasing system size, these findings offer insights into the practical boundaries of classical simulatability. This work suggests task-specific LLMs can surpass general-purpose models like GPT-4o in quantum algorithm learning and serve as powerful tools for advancing quantum research.
Related papers
- Quantum Convolutional Neural Network: A Hybrid Quantum-Classical Approach for Iris Dataset Classification [0.0]
We present a hybrid quantum-classical machine learning model for classification tasks, integrating a 4-qubit quantum circuit with a classical neural network.
The model was trained over 20 epochs, achieving a perfect 100% accuracy on the Iris dataset test set on 16 epoch.
This work contributes to the growing body of research on hybrid quantum-classical models and their applicability to real-world datasets.
arXiv Detail & Related papers (2024-10-21T13:15:12Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Q-gen: A Parameterized Quantum Circuit Generator [0.6062751776009752]
We introduce Q-gen, a high-level, parameterized quantum circuit generator incorporating 15 realistic quantum algorithms.
Q-gen is an open-source project that serves as the entrance for users with a classical computer science background to dive into the world of quantum computing.
arXiv Detail & Related papers (2024-07-26T12:22:40Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Practical Quantum Search by Variational Quantum Eigensolver on Noisy
Intermediate-scale Quantum Hardware [0.0]
We propose a hybrid quantum-classical architecture that replaces quantum iterations with updates from a classical parameterized quantum state.
Our approach still maintains usable success probability, while the success probability of Grover search is at the same level as random guessing.
arXiv Detail & Related papers (2023-04-07T17:32:55Z) - Iterative Qubits Management for Quantum Index Searching in a Hybrid
System [56.39703478198019]
IQuCS aims at index searching and counting in a quantum-classical hybrid system.
We implement IQuCS with Qiskit and conduct intensive experiments.
Results demonstrate that it reduces qubits consumption by up to 66.2%.
arXiv Detail & Related papers (2022-09-22T21:54:28Z) - A Scalable 5,6-Qubit Grover's Quantum Search Algorithm [0.0]
Grover's quantum search algorithm is one of the well-known applications of quantum computing.
In this paper, a scalable Quantum Grover Search algorithm is introduced and implemented using 5-qubit and 6-qubit quantum circuits.
The accuracy of the proposed 5-qubit and 6-qubit circuits is benchmarked against the state-of-the-art implementations for 3-qubit and 4-qubit.
arXiv Detail & Related papers (2022-04-30T00:35:54Z) - Preparing random states and benchmarking with many-body quantum chaos [48.044162981804526]
We show how to predict and experimentally observe the emergence of random state ensembles naturally under time-independent Hamiltonian dynamics.
The observed random ensembles emerge from projective measurements and are intimately linked to universal correlations built up between subsystems of a larger quantum system.
Our work has implications for understanding randomness in quantum dynamics, and enables applications of this concept in a wider context.
arXiv Detail & Related papers (2021-03-05T08:32:43Z) - Classical variational simulation of the Quantum Approximate Optimization
Algorithm [0.0]
We introduce a method to simulate layered quantum circuits consisting of parametrized gates.
A neural-network parametrization of the many-qubit wave function is used.
For the largest circuits simulated, we reach 54 qubits at 4 QAOA layers.
arXiv Detail & Related papers (2020-09-03T15:55:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.