CancerKG.ORG A Web-scale, Interactive, Verifiable Knowledge Graph-LLM Hybrid for Assisting with Optimal Cancer Treatment and Care
- URL: http://arxiv.org/abs/2501.00223v1
- Date: Tue, 31 Dec 2024 02:19:16 GMT
- Title: CancerKG.ORG A Web-scale, Interactive, Verifiable Knowledge Graph-LLM Hybrid for Assisting with Optimal Cancer Treatment and Care
- Authors: Michael Gubanov, Anna Pyayt, Aleksandra Karolak,
- Abstract summary: We describe one of the first Web-scale hybrid Knowledge Graph (KG)-Large Language Model (LLM)
CancerKG is populated with the latest peer-reviewed medical knowledge on colorectal Cancer.
Our hybrid is remarkable as it serves the user needs better than just an LLM, KG or a search-engine in isolation.
- Score: 45.84205238554709
- License:
- Abstract: Here, we describe one of the first Web-scale hybrid Knowledge Graph (KG)-Large Language Model (LLM), populated with the latest peer-reviewed medical knowledge on colorectal Cancer. It is currently being evaluated to assist with both medical research and clinical information retrieval tasks at Moffitt Cancer Center, which is one of the top Cancer centers in the U.S. and in the world. Our hybrid is remarkable as it serves the user needs better than just an LLM, KG or a search-engine in isolation. LLMs as is are known to exhibit hallucinations and catastrophic forgetting as well as are trained on outdated corpora. The state of the art KGs, such as PrimeKG, cBioPortal, ChEMBL, NCBI, and other require manual curation, hence are quickly getting stale. CancerKG is unsupervised and is capable of automatically ingesting and organizing the latest medical findings. To alleviate the LLMs shortcomings, the verified KG serves as a Retrieval Augmented Generation (RAG) guardrail. CancerKG exhibits 5 different advanced user interfaces, each tailored to serve different data modalities better and more convenient for the user.
Related papers
- Cancer-Answer: Empowering Cancer Care with Advanced Large Language Models [0.0]
Gastrointestinal (GI) tract cancers account for a substantial portion of the global cancer burden.
Cancer-related queries are crucial for timely diagnosis, treatment, and patient education.
We leverage large language models (LLMs) such as GPT-3.5 Turbo to generate accurate, contextually relevant responses to cancer-related queries.
arXiv Detail & Related papers (2024-11-11T12:54:22Z) - Cancer-Net SCa-Synth: An Open Access Synthetically Generated 2D Skin Lesion Dataset for Skin Cancer Classification [65.83291923029985]
In the United States, skin cancer ranks as the most commonly diagnosed cancer, presenting a significant public health issue.
Recent advancements in dataset curation and deep learning have shown promise in quick and accurate detection of skin cancer.
Cancer-Net SCa- Synth is an open access synthetically generated 2D skin lesion dataset for skin cancer classification.
arXiv Detail & Related papers (2024-11-08T02:04:21Z) - MEG: Medical Knowledge-Augmented Large Language Models for Question Answering [37.3562521243773]
We present MEG, a parameter-efficient approach for medical knowledge-augmented LLMs.
We evaluate our method on four popular medical multiple-choice datasets.
arXiv Detail & Related papers (2024-11-06T12:57:58Z) - Cancer Cell Classification using Deep Learning [0.0]
There are two sorts of tumors: benign and malignant.
Most data produced in today's online environment comes from websites related to healthcare or social media.
This research classifies bacteria cells as benign or cancerous using various deep-learning algorithms.
arXiv Detail & Related papers (2024-10-21T21:21:16Z) - Enhanced Cascade Prostate Cancer Classifier in mp-MRI Utilizing Recall Feedback Adaptive Loss and Prior Knowledge-Based Feature Extraction [4.00189087655119]
We propose a solution that incorporates prior knowledge, addresses the issue of uneven medical sample distribution, and maintains high interpretability in mpMRI.
Firstly, we introduce Prior Knowledge-Based Feature Extraction, which mathematically models the PI-RADS criteria for prostate cancer as diagnostic information into model training.
Secondly, we propose Adaptive Recall Feedback Loss to address the extremely imbalanced data problem.
Thirdly, we design an Enhanced Cascade Prostate Cancer that classifies prostate cancer into different levels in an interpretable way.
arXiv Detail & Related papers (2024-08-19T07:18:06Z) - Boosting Medical Image-based Cancer Detection via Text-guided Supervision from Reports [68.39938936308023]
We propose a novel text-guided learning method to achieve highly accurate cancer detection results.
Our approach can leverage clinical knowledge by large-scale pre-trained VLM to enhance generalization ability.
arXiv Detail & Related papers (2024-05-23T07:03:38Z) - A Multi-Institutional Open-Source Benchmark Dataset for Breast Cancer
Clinical Decision Support using Synthetic Correlated Diffusion Imaging Data [82.74877848011798]
Cancer-Net BCa is a multi-institutional open-source benchmark dataset of volumetric CDI$s$ imaging data of breast cancer patients.
Cancer-Net BCa is publicly available as a part of a global open-source initiative dedicated to accelerating advancement in machine learning to aid clinicians in the fight against cancer.
arXiv Detail & Related papers (2023-04-12T05:41:44Z) - Scientific Language Models for Biomedical Knowledge Base Completion: An
Empirical Study [62.376800537374024]
We study scientific LMs for KG completion, exploring whether we can tap into their latent knowledge to enhance biomedical link prediction.
We integrate the LM-based models with KG embedding models, using a router method that learns to assign each input example to either type of model and provides a substantial boost in performance.
arXiv Detail & Related papers (2021-06-17T17:55:33Z) - CancerNet-SCa: Tailored Deep Neural Network Designs for Detection of
Skin Cancer from Dermoscopy Images [71.68436132514542]
Skin cancer continues to be the most frequently diagnosed form of cancer in the U.S.
In this study we introduce CancerNet-SCa, a suite of deep neural network designs tailored for the detection of skin cancer from dermoscopy images.
arXiv Detail & Related papers (2020-11-21T02:17:59Z) - Machine Learning Against Cancer: Accurate Diagnosis of Cancer by Machine
Learning Classification of the Whole Genome Sequencing Data [0.0]
We have developed novel methods of MLAC (Machine Learning Against Cancer) achieving perfect results with perfect precision, sensitivity, and specificity.
We have used the whole genome sequencing data acquired by next-generation RNA sequencing techniques in The Cancer Genome Atlas and Genotype-Tissue Expression projects for cancerous and healthy tissues respectively.
arXiv Detail & Related papers (2020-09-12T18:51:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.