Zero-Shot Strategies for Length-Controllable Summarization
- URL: http://arxiv.org/abs/2501.00233v2
- Date: Tue, 11 Feb 2025 12:33:13 GMT
- Title: Zero-Shot Strategies for Length-Controllable Summarization
- Authors: Fabian Retkowski, Alexander Waibel,
- Abstract summary: Large language models (LLMs) struggle with precise length control, particularly in zero-shot settings.
We conduct a comprehensive study evaluating LLMs' length control capabilities across multiple measures and propose practical methods to improve controllability.
Our experiments with LLaMA 3 reveal stark differences in length adherence across measures and highlight inherent biases of the model.
- Score: 56.15356055672189
- License:
- Abstract: Large language models (LLMs) struggle with precise length control, particularly in zero-shot settings. We conduct a comprehensive study evaluating LLMs' length control capabilities across multiple measures and propose practical methods to improve controllability. Our experiments with LLaMA 3 reveal stark differences in length adherence across measures and highlight inherent biases of the model. To address these challenges, we introduce a set of methods: length approximation, target adjustment, sample filtering, and automated revisions. By combining these methods, we demonstrate substantial improvements in length compliance while maintaining or enhancing summary quality, providing highly effective zero-shot strategies for precise length control without the need for model fine-tuning or architectural changes. With our work, we not only advance our understanding of LLM behavior in controlled text generation but also pave the way for more reliable and adaptable summarization systems in real-world applications.
Related papers
- Influences on LLM Calibration: A Study of Response Agreement, Loss Functions, and Prompt Styles [4.477423478591491]
Calib-n is a novel framework that trains an auxiliary model for confidence estimation.
We find that few-shot prompts are the most effective for auxiliary model-based methods.
arXiv Detail & Related papers (2025-01-07T18:48:42Z) - Length Controlled Generation for Black-box LLMs [70.57649832433451]
Large language models (LLMs) have demonstrated impressive instruction following capabilities, but struggle to accurately manage the length of generated text.
We propose a novel iterative sampling framework for text length control, integrating the Metropolis-Hastings algorithm with an importance sampling acceleration strategy.
Our framework achieves almost 100% success rates of length control on Llama3.1 for tasks such as length-controlled abstractive summarization.
arXiv Detail & Related papers (2024-12-19T09:07:38Z) - MALMM: Multi-Agent Large Language Models for Zero-Shot Robotics Manipulation [52.739500459903724]
Large Language Models (LLMs) have demonstrated remarkable planning abilities across various domains, including robotics manipulation and navigation.
We propose a novel multi-agent LLM framework that distributes high-level planning and low-level control code generation across specialized LLM agents.
We evaluate our approach on nine RLBench tasks, including long-horizon tasks, and demonstrate its ability to solve robotics manipulation in a zero-shot setting.
arXiv Detail & Related papers (2024-11-26T17:53:44Z) - Control Large Language Models via Divide and Conquer [94.48784966256463]
This paper investigates controllable generation for large language models (LLMs) with prompt-based control, focusing on Lexically Constrained Generation (LCG)
We evaluate the performance of LLMs on satisfying lexical constraints with prompt-based control, as well as their efficacy in downstream applications.
arXiv Detail & Related papers (2024-10-06T21:20:06Z) - RLEF: Grounding Code LLMs in Execution Feedback with Reinforcement Learning [33.754240030720425]
Large language models (LLMs) deployed as agents solve user-specified tasks over multiple steps while keeping the required manual engagement to a minimum.
We propose an end-to-end reinforcement learning method for teaching models to leverage execution feedback in the realm of code synthesis.
arXiv Detail & Related papers (2024-10-02T23:25:17Z) - One Token Can Help! Learning Scalable and Pluggable Virtual Tokens for Retrieval-Augmented Large Language Models [67.49462724595445]
Retrieval-augmented generation (RAG) is a promising way to improve large language models (LLMs)
We propose a novel method that involves learning scalable and pluggable virtual tokens for RAG.
arXiv Detail & Related papers (2024-05-30T03:44:54Z) - Prompt-Based Length Controlled Generation with Reinforcement Learning [48.49553921757085]
We propose a prompt-based length control method to achieve high-accuracy length controlled generation.
We adopt reinforcement learning with the reward signal given by either trainable or rule-based reward models.
Our method significantly improves the accuracy of prompt-based length control for summarization task on popular datasets like CNNDM and NYT.
arXiv Detail & Related papers (2023-08-23T09:43:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.